| dc.contributor.author | Ertürk, Müzeyyen | |
| dc.contributor.author | Kızmaz, Asiye | |
| dc.date.accessioned | 2025-12-15T11:25:33Z | |
| dc.date.available | 2025-12-15T11:25:33Z | |
| dc.date.issued | 2021 | |
| dc.identifier.issn | 2305-221X | |
| dc.identifier.uri | http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/6998 | |
| dc.description.abstract | In this paper, we study convergence analysis of a new gradient projection algorithm for solving convex minimization problems in Hilbert spaces. We observe that the proposed gradient projection algorithm weakly converges to a minimum of convex function f which is defined from a closed and convex subset of a Hilbert space to Double-struck capital R. Also, we give a nontrivial example to illustrate our result in an infinite dimensional Hilbert space. We apply our result to solve the split feasibility problem. | tr |
| dc.language.iso | en | tr |
| dc.publisher | SPRINGER SINGAPORE PTE LTD | tr |
| dc.subject | Gradient projection algorithm | tr |
| dc.subject | Convex optimization problem | tr |
| dc.subject | Fixed point | tr |
| dc.subject | Split feasibility problem | tr |
| dc.title | A New Gradient Projection Algorithm for Convex Minimization Problem and its Application to Split Feasibility Problem | tr |
| dc.type | Article | tr |
| dc.contributor.authorID | 0000-0002-5328-7995 | tr |
| dc.contributor.department | Adiyaman Univ, Dept Math | tr |
| dc.identifier.endpage | 44 | tr |
| dc.identifier.issue | 1 | tr |
| dc.identifier.startpage | 29 | tr |
| dc.identifier.volume | 50 | tr |
| dc.source.title | VIETNAM JOURNAL OF MATHEMATICS | tr |