| dc.contributor.author | Gümüş, İbrahim Halil | |
| dc.date.accessioned | 2025-12-15T11:24:26Z | |
| dc.date.available | 2025-12-15T11:24:26Z | |
| dc.date.issued | 2021 | |
| dc.identifier.issn | 0002-9939 | |
| dc.identifier.uri | http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/6977 | |
| dc.description.abstract | In this note, we obtain generalized versions of reverse Young inequalities as follows: For a(1), a(2), ... , a(n) is an element of [m, M] with M >= m > 0 v(1)a(1) + v(2)a(2) + ... + v(n)a(n) <= S (M/m) a(1)(v1)a(2)(v2) ... a(n)(vn) and v(1)a(1) + v(2)a(2) + ... + v(n)a(n) <= max(ai is an element of[m, M]) S(a(i)/a(j)) L(a(i), a(j)) + a(1)(v1)a(2)(v2) ... a(n)(vn) where S(.) is Specht's ratio, L (a(i), a(j)) is logarithmic mean and v(i) is an element of [0,1] such that v(1) + v(2) + ... + v(n) = 1. Unlike the proof methods used in the articles on Young's inequality, the proofs of this study are obtained through first order conditions for constrained optimization problems. | tr |
| dc.language.iso | en | tr |
| dc.publisher | AMER MATHEMATICAL SOC | tr |
| dc.subject | Specht's ratio | tr |
| dc.subject | Young's inequality | tr |
| dc.subject | KKT conditions | tr |
| dc.title | GENERALIZED VERSIONS OF REVERSE YOUNG INEQUALITIES | tr |
| dc.type | Article | tr |
| dc.contributor.authorID | 0000-0002-3071-1159 | tr |
| dc.contributor.department | Adiyaman Univ, Fac Arts & Sci, Dept Math | tr |
| dc.identifier.endpage | 4377 | tr |
| dc.identifier.issue | 10 | tr |
| dc.identifier.startpage | 4371 | tr |
| dc.identifier.volume | 149 | tr |
| dc.source.title | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY | tr |