| dc.contributor.author | Belmor, Samiha | |
| dc.contributor.author | Jarad, Fahd | |
| dc.contributor.author | Abdeljawad, Thabet | |
| dc.contributor.author | Kılınç, Gülsen | |
| dc.date.accessioned | 2025-10-28T07:31:39Z | |
| dc.date.available | 2025-10-28T07:31:39Z | |
| dc.date.issued | 2020 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.uri | http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/6798 | |
| dc.description.abstract | Abstract This note is concerned with establishing the existence of solutions to a fractional differential inclusion of a psi -Caputo-type with a nonlocal integral boundary condition. Using the concept of the endpoint theorem for phi -weak contractive maps, we investigate the existence of solutions to the proposed problem. An example is provided at the end to clarify the theoretical result. | tr |
| dc.language.iso | en | tr |
| dc.publisher | SPRINGER | tr |
| dc.subject | Riemann-Liouville fractional derivative with respect to another function | tr |
| dc.subject | Caputo fractional derivative with respect to another function | tr |
| dc.subject | Fractional differential inclusion | tr |
| dc.subject | phi-Weak contractive | tr |
| dc.subject | 26A33 | tr |
| dc.subject | 34A60 | tr |
| dc.subject | 30E25 | tr |
| dc.title | A study of boundary value problem for generalized fractional differential inclusion via endpoint theory for weak contractions | tr |
| dc.type | Article | tr |
| dc.contributor.authorID | 0000-0002-1659-4734 | tr |
| dc.contributor.authorID | 0000-0002-8889-3768 | tr |
| dc.contributor.department | Univ Batna, Dept Math, | tr |
| dc.contributor.department | Cankaya Univ, Dept Math | tr |
| dc.contributor.department | Prince Sultan Univ, Dept Math & Gen Sci | tr |
| dc.contributor.department | China Med Univ, Dept Med Res | tr |
| dc.contributor.department | Asia Univ, Dept Comp Sci & Informat Engn | tr |
| dc.contributor.department | Adiyaman Univ, Fac Educ, Dept Elementary Educ | tr |
| dc.identifier.issue | 1 | tr |
| dc.identifier.volume | 2020 | tr |
| dc.source.title | ADVANCES IN DIFFERENCE EQUATIONS | tr |