dc.contributor.author |
Hazarika, Bipan |
|
dc.contributor.author |
Esi, Ayhan |
|
dc.date.accessioned |
2025-03-17T05:30:22Z |
|
dc.date.available |
2025-03-17T05:30:22Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
0971-3611 |
|
dc.identifier.uri |
http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/5996 |
|
dc.description.abstract |
An ideal I is a family of subsets of positive integers N which is closed under taking finite unions and subsets of its elements. In this paper, we define and study the notion of I theta -convergence as a variant of the notion of ideal convergence, where theta=(hr) is a nondecreasing sequence of positive real numbers. We further apply this notion of summability to prove a Korovkin type approximation theorem. |
tr |
dc.language.iso |
en |
tr |
dc.publisher |
SPRINGERNATURE |
tr |
dc.subject |
I-convergence |
tr |
dc.subject |
theta-convergence |
tr |
dc.subject |
Positive linear operator |
tr |
dc.subject |
The Korovkin theorem |
tr |
dc.subject |
40G15 |
tr |
dc.subject |
40A99 |
tr |
dc.subject |
41A10 |
tr |
dc.subject |
41A25 |
tr |
dc.title |
1 of 1 Lacunary ideal summability and its applications to approximation theorem |
tr |
dc.type |
Article |
tr |
dc.contributor.authorID |
0000-0002-0644-0600 |
tr |
dc.contributor.authorID |
0000-0003-3137-3865 |
tr |
dc.contributor.department |
Rajiv Gandhi Univ, Dept Math, |
tr |
dc.contributor.department |
Gauhati Univ, Dept Math, |
tr |
dc.contributor.department |
Adiyaman Univ, Dept Math Sci & Art Fac, |
tr |
dc.identifier.endpage |
1006 |
tr |
dc.identifier.issue |
4 |
tr |
dc.identifier.startpage |
997 |
tr |
dc.identifier.volume |
27 |
tr |
dc.source.title |
JOURNAL OF ANALYSIS |
tr |