dc.contributor.author |
Gürsoy, Faik |
|
dc.contributor.author |
Ertürk, Müzeyyen |
|
dc.contributor.author |
Khan, Abdul Qayyum |
|
dc.contributor.author |
Karakaya, Vatan |
|
dc.date.accessioned |
2025-03-17T05:24:55Z |
|
dc.date.available |
2025-03-17T05:24:55Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
0350-1302 |
|
dc.identifier.uri |
http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/5964 |
|
dc.description.abstract |
We propose a new Jungck-S iteration method for a class of quasi-contractive operators on a convex metric space and study its strong convergence, rate of convergence and stability. We also provide conditions under which convergence of this method is equivalent to Jungck-Ishikawa iteration method. Some numerical examples are provided to validate the theoretical findings obtained herein. Our results are refinement and extension of the corresponding ones existing in the current literature. |
tr |
dc.language.iso |
en |
tr |
dc.publisher |
PUBLICATIONS L INSTITUT MATHEMATIQUE MATEMATICKI |
tr |
dc.subject |
Jungck type iteration methods |
tr |
dc.subject |
quasi-contractive operators |
tr |
dc.subject |
convergence |
tr |
dc.subject |
rate of convergencestability |
tr |
dc.title |
ANALYTICAL AND NUMERICAL ASPECT OF COINCIDENCE POINT PROBLEM OF QUASI-CONTRACTIVE OPERATORS |
tr |
dc.type |
Article |
tr |
dc.contributor.authorID |
0000-0002-7118-9088 |
tr |
dc.contributor.authorID |
0000-0002-5328-7995 |
tr |
dc.contributor.authorID |
0000-0003-4637-3139 |
tr |
dc.contributor.department |
Adiyaman Univ, Dept Math |
tr |
dc.contributor.department |
King Fahd Univ Petr & Minerals, Dept Math & Stat |
tr |
dc.contributor.department |
Yildiz Tech Univ, Dept Math Engn |
tr |
dc.identifier.endpage |
121 |
tr |
dc.identifier.issue |
119 |
tr |
dc.identifier.startpage |
101 |
tr |
dc.identifier.volume |
105 |
tr |
dc.source.title |
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD |
tr |