| dc.contributor.author | Gürsoy, Faik | |
| dc.contributor.author | Ertürk, Müzeyyen | |
| dc.contributor.author | Khan, Abdul Qayyum | |
| dc.contributor.author | Karakaya, Vatan | |
| dc.date.accessioned | 2025-03-17T05:24:55Z | |
| dc.date.available | 2025-03-17T05:24:55Z | |
| dc.date.issued | 2019 | |
| dc.identifier.issn | 0350-1302 | |
| dc.identifier.uri | http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/5964 | |
| dc.description.abstract | We propose a new Jungck-S iteration method for a class of quasi-contractive operators on a convex metric space and study its strong convergence, rate of convergence and stability. We also provide conditions under which convergence of this method is equivalent to Jungck-Ishikawa iteration method. Some numerical examples are provided to validate the theoretical findings obtained herein. Our results are refinement and extension of the corresponding ones existing in the current literature. | tr |
| dc.language.iso | en | tr |
| dc.publisher | PUBLICATIONS L INSTITUT MATHEMATIQUE MATEMATICKI | tr |
| dc.subject | Jungck type iteration methods | tr |
| dc.subject | quasi-contractive operators | tr |
| dc.subject | convergence | tr |
| dc.subject | rate of convergencestability | tr |
| dc.title | ANALYTICAL AND NUMERICAL ASPECT OF COINCIDENCE POINT PROBLEM OF QUASI-CONTRACTIVE OPERATORS | tr |
| dc.type | Article | tr |
| dc.contributor.authorID | 0000-0002-7118-9088 | tr |
| dc.contributor.authorID | 0000-0002-5328-7995 | tr |
| dc.contributor.authorID | 0000-0003-4637-3139 | tr |
| dc.contributor.department | Adiyaman Univ, Dept Math | tr |
| dc.contributor.department | King Fahd Univ Petr & Minerals, Dept Math & Stat | tr |
| dc.contributor.department | Yildiz Tech Univ, Dept Math Engn | tr |
| dc.identifier.endpage | 121 | tr |
| dc.identifier.issue | 119 | tr |
| dc.identifier.startpage | 101 | tr |
| dc.identifier.volume | 105 | tr |
| dc.source.title | PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | tr |