dc.contributor.author |
Erdoğan, Feyza Esra |
|
dc.contributor.author |
Perktaş, Selcen Yüksel |
|
dc.contributor.author |
Acet, Bilal Eftal |
|
dc.contributor.author |
Blaga, Adara Monica |
|
dc.date.accessioned |
2025-03-10T08:16:53Z |
|
dc.date.available |
2025-03-10T08:16:53Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
0393-0440 |
|
dc.identifier.uri |
http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/5895 |
|
dc.description.abstract |
In the present paper, we introduce screen transversal lightlike submanifolds of metallic semi-Riemannian manifolds with its subclasses, namely screen transversal anti-invariant, radical screen transversal and isotropic screen transversal lightlike submanifolds, and give an example. We show that there do not exist co-isotropic and totally screen transversal type of screen transversal anti-invariant lightlike submanifolds of a metallic semi-Riemannian manifold. We investigate the geometry of distributions involved in the definition of such submanifolds and the conditions for the induced connection to be a metric connection. Furthermore, we give a necessary and sufficient condition for an isotropic screen transversal lightlike submanifold to be totally geodesic. (C) 2019 Elsevier B.V. All rights reserved. |
tr |
dc.language.iso |
en |
tr |
dc.publisher |
ELSEVIER |
tr |
dc.subject |
Metallic structure |
tr |
dc.subject |
Lightlike submanifold |
tr |
dc.subject |
Screen transversal lightlike submanifold |
tr |
dc.title |
Screen transversal lightlike submanifolds of metallic semi-Riemannian manifolds |
tr |
dc.type |
Article |
tr |
dc.contributor.authorID |
0000-0003-0568-7510 |
tr |
dc.contributor.authorID |
0000-0002-8848-0621 |
tr |
dc.contributor.authorID |
0000-0003-0237-3866 |
tr |
dc.contributor.department |
Ege Univ, Dept Math, Fac Sci |
tr |
dc.contributor.department |
Adiyaman Univ, Fac Arts & Sci, Dept Math |
tr |
dc.contributor.department |
Adiyaman Univ, Dept Math |
tr |
dc.contributor.department |
West Univ Timisoara, Dept Math, Fac Math & Comp Sci, |
tr |
dc.identifier.endpage |
120 |
tr |
dc.identifier.startpage |
111 |
tr |
dc.identifier.volume |
142 |
tr |
dc.source.title |
JOURNAL OF GEOMETRY AND PHYSICS |
tr |