| dc.contributor.author | Moradi, Hamid Reza | |
| dc.contributor.author | Gümüş, İbrahim halil | |
| dc.contributor.author | Heydarbeygi, Zahra | |
| dc.date.accessioned | 2025-02-17T10:37:43Z | |
| dc.date.available | 2025-02-17T10:37:43Z | |
| dc.date.issued | 2019 | |
| dc.identifier.issn | 0308-1087 | |
| dc.identifier.uri | http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/5775 | |
| dc.description.abstract | We show the following result: Let A be a positive operator satisfying 0 < m1(H) <= A <= M1(H) for some scalars m, M with m < M and Phi be a normalized positive linear map, then Phi (A(-1)) <= Phi (m(A-M1H/M-m) Mm1H-A/M-m) <= (M + m)(2)/4Mm Phi(A)(-1). Besides, we prove that the second inequality in the above can be squared. | tr |
| dc.language.iso | en | tr |
| dc.publisher | TAYLOR & FRANCIS LTD | tr |
| dc.subject | Operator inequality | tr |
| dc.subject | Kantorovich inequality | tr |
| dc.subject | positive linear maps | tr |
| dc.subject | log-convex functions | tr |
| dc.title | A glimpse at the operator Kantorovich inequality | tr |
| dc.type | Article | tr |
| dc.contributor.authorID | 0000-0002-0233-0455 | tr |
| dc.contributor.authorID | 0000-0002-3071-1159 | tr |
| dc.contributor.department | Islamic Azad Univ, Mashhad Branch, Young Researchers & Elite Club, Mashhad, Iran | tr |
| dc.contributor.department | Adiyaman Univ, Dept Math, Fac Arts & Sci, Adiyaman, Turkey | tr |
| dc.contributor.department | Islamic Azad Univ, Mashhad Branch, Dept Math, | tr |
| dc.identifier.endpage | 1036 | tr |
| dc.identifier.issue | 5 | tr |
| dc.identifier.startpage | 1031 | tr |
| dc.identifier.volume | 67 | tr |
| dc.source.title | LINEAR & MULTILINEAR ALGEBRA | tr |