dc.contributor.author |
Moradi, Hamid Reza |
|
dc.contributor.author |
Gümüş, İbrahim halil |
|
dc.contributor.author |
Heydarbeygi, Zahra |
|
dc.date.accessioned |
2025-02-17T10:37:43Z |
|
dc.date.available |
2025-02-17T10:37:43Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
0308-1087 |
|
dc.identifier.uri |
http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/5775 |
|
dc.description.abstract |
We show the following result: Let A be a positive operator satisfying 0 < m1(H) <= A <= M1(H) for some scalars m, M with m < M and Phi be a normalized positive linear map, then
Phi (A(-1)) <= Phi (m(A-M1H/M-m) Mm1H-A/M-m) <= (M + m)(2)/4Mm Phi(A)(-1).
Besides, we prove that the second inequality in the above can be squared. |
tr |
dc.language.iso |
en |
tr |
dc.publisher |
TAYLOR & FRANCIS LTD |
tr |
dc.subject |
Operator inequality |
tr |
dc.subject |
Kantorovich inequality |
tr |
dc.subject |
positive linear maps |
tr |
dc.subject |
log-convex functions |
tr |
dc.title |
A glimpse at the operator Kantorovich inequality |
tr |
dc.type |
Article |
tr |
dc.contributor.authorID |
0000-0002-0233-0455 |
tr |
dc.contributor.authorID |
0000-0002-3071-1159 |
tr |
dc.contributor.department |
Islamic Azad Univ, Mashhad Branch, Young Researchers & Elite Club, Mashhad, Iran |
tr |
dc.contributor.department |
Adiyaman Univ, Dept Math, Fac Arts & Sci, Adiyaman, Turkey |
tr |
dc.contributor.department |
Islamic Azad Univ, Mashhad Branch, Dept Math, |
tr |
dc.identifier.endpage |
1036 |
tr |
dc.identifier.issue |
5 |
tr |
dc.identifier.startpage |
1031 |
tr |
dc.identifier.volume |
67 |
tr |
dc.source.title |
LINEAR & MULTILINEAR ALGEBRA |
tr |