| dc.contributor.author | Özlem Gümüş, Özlem | |
| dc.contributor.author | Selvam, A. George Maria | |
| dc.contributor.author | Vianny, D. Abraham | |
| dc.date.accessioned | 2025-01-09T10:24:55Z | |
| dc.date.available | 2025-01-09T10:24:55Z | |
| dc.date.issued | 2019 | |
| dc.identifier.issn | 2291-8639 | |
| dc.identifier.uri | http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/5720 | |
| dc.description.abstract | In this paper, we study the qualitative behavior of a discrete-time epidemic model with vaccination. Analysis of the model shows forth that the Disease Free Equilibrium (DFE) point is asymptotically stable if the basic reproduction number R-0 is less than one, while the Endemic Equilibrium (EE) point is asymptotically stable if the basic reproduction number R-0 is greater than one. The results are reinforced with numerical simulations and enhanced with graphical representations like time trajectories, phase portraits and bifurcation diagrams for different sets of parameter values. | tr |
| dc.language.iso | en | tr |
| dc.publisher | ETAMATHS PUBL | tr |
| dc.subject | difference equations | tr |
| dc.subject | epidemic model | tr |
| dc.subject | bifurcation | tr |
| dc.subject | stability theory | tr |
| dc.title | BIFURCATION AND STABILITY ANALYSIS OF A DISCRETE TIME SIR EPIDEMIC MODEL WITH VACCINATION | tr |
| dc.type | Article | tr |
| dc.contributor.authorID | 0000-0003-2610-8565 | tr |
| dc.contributor.department | Adiyaman Univ, Fac Arts & Sci, Dept Math, | tr |
| dc.contributor.department | Sacred Heart Coll Autonomous, Dept Math, | tr |
| dc.identifier.endpage | 820 | tr |
| dc.identifier.issue | 5 | tr |
| dc.identifier.startpage | 809 | tr |
| dc.identifier.volume | 17 | tr |
| dc.source.title | INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS | tr |