dc.contributor.author |
Özlem Gümüş, Özlem |
|
dc.contributor.author |
Selvam, A. George Maria |
|
dc.contributor.author |
Vianny, D. Abraham |
|
dc.date.accessioned |
2025-01-09T10:24:55Z |
|
dc.date.available |
2025-01-09T10:24:55Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
2291-8639 |
|
dc.identifier.uri |
http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/5720 |
|
dc.description.abstract |
In this paper, we study the qualitative behavior of a discrete-time epidemic model with vaccination. Analysis of the model shows forth that the Disease Free Equilibrium (DFE) point is asymptotically stable if the basic reproduction number R-0 is less than one, while the Endemic Equilibrium (EE) point is asymptotically stable if the basic reproduction number R-0 is greater than one. The results are reinforced with numerical simulations and enhanced with graphical representations like time trajectories, phase portraits and bifurcation diagrams for different sets of parameter values. |
tr |
dc.language.iso |
en |
tr |
dc.publisher |
ETAMATHS PUBL |
tr |
dc.subject |
difference equations |
tr |
dc.subject |
epidemic model |
tr |
dc.subject |
bifurcation |
tr |
dc.subject |
stability theory |
tr |
dc.title |
BIFURCATION AND STABILITY ANALYSIS OF A DISCRETE TIME SIR EPIDEMIC MODEL WITH VACCINATION |
tr |
dc.type |
Article |
tr |
dc.contributor.authorID |
0000-0003-2610-8565 |
tr |
dc.contributor.department |
Adiyaman Univ, Fac Arts & Sci, Dept Math, |
tr |
dc.contributor.department |
Sacred Heart Coll Autonomous, Dept Math, |
tr |
dc.identifier.endpage |
820 |
tr |
dc.identifier.issue |
5 |
tr |
dc.identifier.startpage |
809 |
tr |
dc.identifier.volume |
17 |
tr |
dc.source.title |
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS |
tr |