dc.contributor.author |
Ertürk, Müzeyyen |
|
dc.contributor.author |
Gürsoy, Faik |
|
dc.date.accessioned |
2024-12-30T10:20:38Z |
|
dc.date.available |
2024-12-30T10:20:38Z |
|
dc.date.issued |
2019 |
|
dc.identifier.issn |
0862-7959 |
|
dc.identifier.uri |
http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/5665 |
|
dc.description.abstract |
We study some qualitative features like convergence, stability and data dependency for Picard-S iteration method of a quasi-strictly contractive operator under weaker conditions imposed on parametric sequences in the mentioned method. We compare the rate of convergence among the Mann, Ishikawa, Noor, normal-S, and Picard-S iteration methods for the quasi-strictly contractive operators. Results reveal that the Picard-S iteration method converges fastest to the fixed point of quasi-strictly contractive operators. Some numerical examples are given to validate the results obtained herein. Our results substantially improve many other results available in the literature. |
tr |
dc.language.iso |
en |
tr |
dc.publisher |
INST MATHEMATICS, |
tr |
dc.subject |
iteration method |
tr |
dc.subject |
quasi-strictly contractive operator |
tr |
dc.subject |
convergence |
tr |
dc.subject |
rate of convergence |
tr |
dc.subject |
stability |
tr |
dc.subject |
data dependency |
tr |
dc.title |
SOME CONVERGENCE, STABILITY AND DATA DEPENDENCY RESULTS FOR A PICARD-S ITERATION METHOD OF QUASI-STRICTLY CONTRACTIVE OPERATORS |
tr |
dc.type |
Article |
tr |
dc.contributor.authorID |
0000-0002-5328-7995 |
tr |
dc.contributor.authorID |
0000-0002-7118-9088 |
tr |
dc.identifier.endpage |
83 |
tr |
dc.identifier.issue |
1 |
tr |
dc.identifier.startpage |
69 |
tr |
dc.identifier.volume |
144 |
tr |
dc.source.title |
Adiyaman Univ, Dept Math, |
tr |