Adıyaman Üniversitesi Kurumsal Arşivi

A study on fractional Klein Gordon equation with non-local and non-singular kernel

Basit öğe kaydını göster

dc.contributor.author Karaağaç, Berat
dc.date.accessioned 2024-12-09T13:08:54Z
dc.date.available 2024-12-09T13:08:54Z
dc.date.issued 2019
dc.identifier.issn 0960-0779
dc.identifier.uri http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/5558
dc.description.abstract This manuscript focus primarily on the numerical treatment of time fractional Klein Gordon (KG) equation using the Atangana-Baleanu fractional derivative which combines both nonlocal and nonsingular properties. A noble numerical technique based on Adams-Bashforth method is adopted for the numerical approximation of the KG equation. A detailed mathematical analysis showing the existence and uniqueness of the solutions is presented using the Picard-Lindelof theorem and the theory of fixed point. Stability analysis of the newly obtained numerical scheme for Klein Gordon equation is examined via the Ulam Hyers stability approach. The applicability of the numerical method is justified via some numerical experiments obtained for different instances of fractional order alpha. (C) 2019 Elsevier Ltd. All rights reserved. tr
dc.language.iso en tr
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD tr
dc.subject ABC fractional derivative tr
dc.subject Existence and uniqueness tr
dc.subject Graphical simulation tr
dc.subject Time-dependent PDE tr
dc.subject Stability analysis tr
dc.title A study on fractional Klein Gordon equation with non-local and non-singular kernel tr
dc.type Article tr
dc.contributor.authorID 0000-0002-6020-3243 tr
dc.contributor.department Adiyaman Univ, Dept Math Educ, tr
dc.identifier.endpage 229 tr
dc.identifier.startpage 218 tr
dc.identifier.volume 126 tr
dc.source.title CHAOS SOLITONS & FRACTALS tr


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster