dc.contributor.author |
Khan, Abdul Rahim |
|
dc.contributor.author |
Fukhar-ud-Din, Hafiz |
|
dc.contributor.author |
Gürsoy, Faik |
|
dc.date.accessioned |
2024-03-13T05:39:12Z |
|
dc.date.available |
2024-03-13T05:39:12Z |
|
dc.date.issued |
2018 |
|
dc.identifier.issn |
1345-4773 |
|
dc.identifier.uri |
http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/4950 |
|
dc.description.abstract |
We introduce the notion of almost Presic contractive operator and approximate its unique fixed point through some well-known iterative algorithms. We show that Picard-Picard hybrid iterative algorithm is faster than the others. Moreover, Mann and Ishikawa iterative algorithms have the same rate of convergence. The corresponding data dependence results and examples to validate our findings are also given. Our results hold in normed spaces and CAT (0) spaces, simultaneously. |
tr |
dc.language.iso |
en |
tr |
dc.publisher |
YOKOHAMA PUBL |
tr |
dc.subject |
Convex metric space |
tr |
dc.subject |
almost Presic contraction |
tr |
dc.subject |
fixed point |
tr |
dc.subject |
iterative algorithm |
tr |
dc.subject |
rate of convergence |
tr |
dc.title |
RATE OF CONVERGENCE AND DATA DEPENDENCY OF ALMOST PRESIC CONTRACTIVE OPERATORS |
tr |
dc.type |
Article |
tr |
dc.contributor.authorID |
0000-0001-6140-1201 |
tr |
dc.contributor.authorID |
0000-0002-7118-9088 |
tr |
dc.contributor.department |
King Fahd Univ Petr & Minerals, Dept Math & Stat, |
tr |
dc.contributor.department |
Adiyaman Univ, Dept Math, |
tr |
dc.identifier.endpage |
1081 |
tr |
dc.identifier.issue |
6 |
tr |
dc.identifier.startpage |
1069 |
tr |
dc.identifier.volume |
19 |
tr |
dc.source.title |
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS |
tr |