Basit öğe kaydını göster

dc.contributor.author Peters, James Francis
dc.date.accessioned 2022-12-14T06:18:02Z
dc.date.available 2022-12-14T06:18:02Z
dc.date.issued 2016
dc.identifier.issn 0354-5180
dc.identifier.uri http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/4036
dc.description.abstract This article introduces proximal relator spaces. The basic approach is to define a nonvoid family of proximity relations R-delta Phi (called a proximal relator) on a nonempty set. The pair (X,R-delta Phi) (also denoted X(R-delta Phi)) is called a proximal relator space. Then, for example, the traditional closure of a subset of the Sz'az relator space (X,R) can be compared with the more recent descriptive closure of a subset of (X,R-delta Phi). This leads to an extension of fat and dense subsets of the relator space (X,R) to proximal fat and dense subsets of the proximal relator space (X,R-delta Phi). tr
dc.language.iso en tr
dc.publisher Unıv Nıs, Fac Scı Math tr
dc.subject Closure of a set tr
dc.subject Proximity relation tr
dc.subject Relator tr
dc.title Proximal Relator Spaces tr
dc.type Article tr
dc.contributor.department Univ Manitoba, Dept Elect & Comp Engn, tr
dc.identifier.endpage 472 tr
dc.identifier.issue 2 tr
dc.identifier.startpage 469 tr
dc.identifier.volume 30 tr
dc.source.title Filomat tr


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster