dc.contributor.author | Peters, James Francis | |
dc.date.accessioned | 2022-12-14T06:18:02Z | |
dc.date.available | 2022-12-14T06:18:02Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 0354-5180 | |
dc.identifier.uri | http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/4036 | |
dc.description.abstract | This article introduces proximal relator spaces. The basic approach is to define a nonvoid family of proximity relations R-delta Phi (called a proximal relator) on a nonempty set. The pair (X,R-delta Phi) (also denoted X(R-delta Phi)) is called a proximal relator space. Then, for example, the traditional closure of a subset of the Sz'az relator space (X,R) can be compared with the more recent descriptive closure of a subset of (X,R-delta Phi). This leads to an extension of fat and dense subsets of the relator space (X,R) to proximal fat and dense subsets of the proximal relator space (X,R-delta Phi). | tr |
dc.language.iso | en | tr |
dc.publisher | Unıv Nıs, Fac Scı Math | tr |
dc.subject | Closure of a set | tr |
dc.subject | Proximity relation | tr |
dc.subject | Relator | tr |
dc.title | Proximal Relator Spaces | tr |
dc.type | Article | tr |
dc.contributor.department | Univ Manitoba, Dept Elect & Comp Engn, | tr |
dc.identifier.endpage | 472 | tr |
dc.identifier.issue | 2 | tr |
dc.identifier.startpage | 469 | tr |
dc.identifier.volume | 30 | tr |
dc.source.title | Filomat | tr |