Show simple item record

dc.contributor.author Peters, James Francis
dc.date.accessioned 2022-12-14T06:18:02Z
dc.date.available 2022-12-14T06:18:02Z
dc.date.issued 2016
dc.identifier.issn 0354-5180
dc.identifier.uri http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/4036
dc.description.abstract This article introduces proximal relator spaces. The basic approach is to define a nonvoid family of proximity relations R-delta Phi (called a proximal relator) on a nonempty set. The pair (X,R-delta Phi) (also denoted X(R-delta Phi)) is called a proximal relator space. Then, for example, the traditional closure of a subset of the Sz'az relator space (X,R) can be compared with the more recent descriptive closure of a subset of (X,R-delta Phi). This leads to an extension of fat and dense subsets of the relator space (X,R) to proximal fat and dense subsets of the proximal relator space (X,R-delta Phi). tr
dc.language.iso en tr
dc.publisher Unıv Nıs, Fac Scı Math tr
dc.subject Closure of a set tr
dc.subject Proximity relation tr
dc.subject Relator tr
dc.title Proximal Relator Spaces tr
dc.type Article tr
dc.contributor.department Univ Manitoba, Dept Elect & Comp Engn, tr
dc.identifier.endpage 472 tr
dc.identifier.issue 2 tr
dc.identifier.startpage 469 tr
dc.identifier.volume 30 tr
dc.source.title Filomat tr


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account