| dc.contributor.author | Gürsoy, Faik | |
| dc.date.accessioned | 2022-12-05T10:45:00Z | |
| dc.date.available | 2022-12-05T10:45:00Z | |
| dc.date.issued | 2016 | |
| dc.identifier.issn | 0354-5180 | |
| dc.identifier.uri | http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/3980 | |
| dc.description.abstract | We study the convergence analysis of a Picard-S iterative method for a particular class of weak-contraction mappings and give a data dependence result for fixed points of these mappings. Also, we show that the Picard-S iterative method can be used to approximate the unique solution of mixed type Volterra-Fredholm functional nonlinear integral equation x(t) = F(t, x(t), integral(t1)(a1) center dot center dot center dot integral(tm)(am) K(t, s, x(s))ds, integral(b1)(a1) center dot center dot center dot integral(bm)(am) H(t, s, x(s))ds,). Furthermore, with the help of the Picard-S iterative method, we establish a data dependence result for the solution of integral equation mentioned above. | tr |
| dc.language.iso | en | tr |
| dc.publisher | Unıv Nıs, Fac Scı Math | tr |
| dc.subject | Picard-S iterative scheme | tr |
| dc.subject | Weak-Contraction mappings | tr |
| dc.subject | Convergence | tr |
| dc.subject | Rate of Convergence | tr |
| dc.subject | Data Dependence | tr |
| dc.subject | Volterra-Fredholm functional nonlinear integral equation | tr |
| dc.title | A Picard-S Iterative Method for Approximating Fixed Point of Weak-Contraction Mappings | tr |
| dc.type | Article | tr |
| dc.contributor.authorID | 0000-0002-7118-9088 | tr |
| dc.contributor.department | Adiyaman Univ, Fac Arts & Sci, Dept Math, | tr |
| dc.identifier.endpage | 2845 | tr |
| dc.identifier.issue | 10 | tr |
| dc.identifier.startpage | 2829 | tr |
| dc.identifier.volume | 30 | tr |
| dc.source.title | Fılomat | tr |