dc.contributor.author |
Gürsoy, Faik |
|
dc.date.accessioned |
2022-12-05T10:45:00Z |
|
dc.date.available |
2022-12-05T10:45:00Z |
|
dc.date.issued |
2016 |
|
dc.identifier.issn |
0354-5180 |
|
dc.identifier.uri |
http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/3980 |
|
dc.description.abstract |
We study the convergence analysis of a Picard-S iterative method for a particular class of weak-contraction mappings and give a data dependence result for fixed points of these mappings. Also, we show that the Picard-S iterative method can be used to approximate the unique solution of mixed type Volterra-Fredholm functional nonlinear integral equation
x(t) = F(t, x(t), integral(t1)(a1) center dot center dot center dot integral(tm)(am) K(t, s, x(s))ds, integral(b1)(a1) center dot center dot center dot integral(bm)(am) H(t, s, x(s))ds,).
Furthermore, with the help of the Picard-S iterative method, we establish a data dependence result for the solution of integral equation mentioned above. |
tr |
dc.language.iso |
en |
tr |
dc.publisher |
Unıv Nıs, Fac Scı Math |
tr |
dc.subject |
Picard-S iterative scheme |
tr |
dc.subject |
Weak-Contraction mappings |
tr |
dc.subject |
Convergence |
tr |
dc.subject |
Rate of Convergence |
tr |
dc.subject |
Data Dependence |
tr |
dc.subject |
Volterra-Fredholm functional nonlinear integral equation |
tr |
dc.title |
A Picard-S Iterative Method for Approximating Fixed Point of Weak-Contraction Mappings |
tr |
dc.type |
Article |
tr |
dc.contributor.authorID |
0000-0002-7118-9088 |
tr |
dc.contributor.department |
Adiyaman Univ, Fac Arts & Sci, Dept Math, |
tr |
dc.identifier.endpage |
2845 |
tr |
dc.identifier.issue |
10 |
tr |
dc.identifier.startpage |
2829 |
tr |
dc.identifier.volume |
30 |
tr |
dc.source.title |
Fılomat |
tr |