| dc.contributor.author | Perktaş, Selcen Yüksel | |
| dc.contributor.author | Keleş, Sadık | |
| dc.date.accessioned | 2022-09-29T11:36:56Z | |
| dc.date.available | 2022-09-29T11:36:56Z | |
| dc.date.issued | 2015 | |
| dc.identifier.issn | 1307-5624 | |
| dc.identifier.uri | http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/3649 | |
| dc.description.abstract | In the present paper we study 3-dimensional normal almost paracontact metric manifolds admitting Ricci solitons and gradient Ricci solitons. We give an example of 3-dimensional normal almost paracontact metric manifold. It is shown that if in a 3-dimensional normal almost paracontact metric manifold with alpha, beta = constant the metric is Ricci soliton, where potential vector field V is collinear with the characteristic vector field xi, then the manifold is eta-Einstein. We also prove that an eta-Einstein 3-dimensional normal almost paracontact metric manifold with alpha, beta = constant and V = xi admits a Ricci soliton. Furthermore, we show that if a 3-dimensional normal almost paracontact metric manifold admits a Ricci soliton (g, xi, lambda) then the Ricci soliton is shrinking. | tr |
| dc.language.iso | en | tr |
| dc.publisher | Int Electronic Journal Geometry | tr |
| dc.subject | Normal almost paracontact metric manifold | tr |
| dc.subject | Ricci soliton | tr |
| dc.subject | eta-Einstein manifold | tr |
| dc.subject | gradient Ricci | tr |
| dc.title | Ricci solitons in 3-dimensional normal almost paracontact metric manifolds | tr |
| dc.type | Article | tr |
| dc.contributor.authorID | 0000-0002-8848-0621 | tr |
| dc.contributor.authorID | 000-0003-3981-2092 | tr |
| dc.identifier.endpage | 45 | tr |
| dc.identifier.issue | 2 | tr |
| dc.identifier.startpage | 34 | tr |
| dc.identifier.volume | 8 | tr |
| dc.source.title | International Electronic Journal Of Geometry | tr |