Abstract:
The preparation of graft copolymers of poly(methyl methacrylate) with some alkyl methacrylates were carried out via atom transfer radical polymerization method catalyzed by CuCl/2,2'-bipyridine and using a macroinitiator, poly[(methyl methacrylate)-co-(3,5-bis(chloroacetoxy)phenyl methacrylate)], including an amount of 1 mol % having a-halogeno carbonyl group in the side groups. Although the number-average molecular weights of a graft copolymer series of n-butyl methacrylate (n-ButMA) ended at different times increased from 55,700 to 99,500, the polydispersities decreased from 1.85 to 1.39 with time. The thermal degradation kinetics of macroinitiator and a two-armed graft copolymer of n-ButMA with this macroinitiator, PMMA-g-PnButMA: 4% (by mol), were carried out at different heating rates by thermogravimetric analysis and the results were compared. Using both the FlynnWallOzawa and Kissinger methods, the decomposition activation energies for macroinitiator were determined as 168 and 162 kJ/mol, respectively; they were also calculated as 233 and 239 kJ/mol for PMMA-g-PnButMA: 4%. The solid state thermodegradation mechanisms of both macroinitiator and PMMA-g-PnButMA: 4% are R1-type mechanism, a phase boundary-controlled reaction, and F1-type mechanism, a random nucleation with one nucleus on the individual particle, respectively. (c) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012