| dc.contributor.author | Esi, Ayhan | |
| dc.date.accessioned | 2022-02-24T08:26:27Z | |
| dc.date.available | 2022-02-24T08:26:27Z | |
| dc.date.issued | 2009 | |
| dc.identifier.issn | 0893-9659 | |
| dc.identifier.uri | http://dspace.adiyaman.edu.tr:8080/xmlui/handle/20.500.12414/2432 | |
| dc.description.abstract | This work presents the following definition which is a natural combination of the definition for asymptotically equivalent, double statistically limited and double lacunary sequences. Let theta(r s) = {(k(r), l(s))} be a double lacunary sequence; the two nonnegative sequences x = (x(k l)) and y = (y(k l)) are said to be asymptotically double lacunary statistically equivalent of multiple L provided that for every epsilon > 0 P - lim(r,s) 1/h(r,s) |{(k, l) is an element of l(r,s) : |x(k,l)/y(k l) - L| >= epsilon}| = 0 (denoted by x similar to(S theta r,sL) y) and simply asymptotically double lacunary statistically equivalent if L = 1. (C) 2009 Elsevier Ltd. All rights reserved. | tr |
| dc.language.iso | en | tr |
| dc.publisher | Ergamon-Elsevier Science LTD | tr |
| dc.subject | Pringsheim limit point | tr |
| dc.subject | P-convergent | tr |
| dc.subject | Double lacunary sequence | tr |
| dc.subject | Double statistical convergence | tr |
| dc.title | On Asymptotically Double Lacunary Statistically Equivalent Sequences | tr |
| dc.type | Other | tr |
| dc.contributor.authorID | 0000-0003-3137-3865 | tr |
| dc.contributor.department | Adıyaman Üniversitesi/Fen Edebiyat Fakültesi/Matematik Bölümü | tr |
| dc.identifier.endpage | 1785 | tr |
| dc.identifier.issue | 12 | tr |
| dc.identifier.startpage | 1781 | tr |
| dc.identifier.volume | 22 | tr |
| dc.source.title | Applied Mathematics Letters | tr |