T.C. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

İMİDAZOLİN VE 1,4,5,6-TETRAHİDROPİRİMİDİN HALKALARI İÇEREN UZUN ZİNCİRLİ ALKİL TÜREVLERİN MİKRODALGA DESTEKLİ SENTEZİ VE GAUSSİAN HESAPLAMALARI

ZEHRA DOGRU

KİMYA ANABİLİM DALI

ADIYAMAN, 2019

T.C. ADIYAMAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İMİDAZOLİN VE 1,4,5,6-TETRAHİDROPİRİMİDİN HALKALARI İÇEREN UZUN ZİNCİRLİ ALKİL TÜREVLERİN MİKRODALGA DESTEKLİ SENTEZİ VE GAUSSİAN HESAPLAMALARI

Zehra DOGRU

Yüksek Lisans Tezi

Kimya Anabilim Dalı

Bu tez 02 / 05 /2019 tarihinde aşağıdaki jüri üyeleri tarafından oybirliği/oyçokluğu ile kabul edilmiştir.

Dr. Öğr. Üyesi Murat GENÇ Danışman

Dr. Öğr. Üyesi Esra BARIM Üye Doç. Dr. Cumhur KIRILMIŞ Üye

Prof. Dr. Refet KARADAĞ Enstitü Müdürü

Not: Bu tezde kullanılan özgün ve başka kaynaktan yapılan bildirişlerin, çizelge ve fotoğrafların kaynak gösterilmeden kullanımı, 5846 sayılı Fikir ve Sanat Eserleri Kanunu'ndaki hükümlere tabidir.

ÖZET

Yüksek Lisans Tezi

İMİDAZOLİN VE 1,4,5,6-TETRAHİDROPİRİMİDİN HALKALARI İÇEREN UZUN ZİNCİRLİ ALKİL TÜREVLERİN MİKRODALGA DESTEKLİ SENTEZİ VE GAUSSİAN HESAPLAMALARI

Zehra DOGRU

Adıyaman Üniversitesi Fen Bilimleri Enstitüsü Kimya Anabilim Dalı

Danışman	: Dr. Öğr. Üyesi Murat GENÇ
Yıl	: 2019, Sayfa sayısı: 109
Jüri	: Doç. Dr. Cumhur KIRILMIŞ Dr. Öğr. Üyesi Esra BARIM

Tez çalışmasında ilk olarak; etilendiamin (ya da diaminopropan) bileşiğinin Tetrahidrofuran çözücüsü içerisinde bazik ortamda miristoilklorür (ya da palmotoilklorür) bileşiğiyle reaksiyonundan uzun zincirli 2-sübstitüe-imidazolin ve 2sübstitüe-1,4,5,6-tetrahidropirimidin bileşikleri elde edildi. Elde edilen bileşiklerin yapıları ¹H-NMR, FT-IR teknikleri kullanılarak karakterize edildi. İkinci kısımda ise; Gaussian 09 programı kullanılarak teorik ¹H-NMR, FT-IR spektrumlarının yanı sıra, HOMO-LUMO enerji düzeyleri, elektronegatiflik (χ), kimyasal sertlik (η) gibi bazı moleküler parametreleri, MEP, termodinamik parametreler ve teorik UV-Vis spektrumları hesaplandı.

Anahtar Kelimeler : İmidazolin; Tetrahidropirimidin; DFT

ABSTRACT

MSc Thesis

MİCROWAWE-ASSİSTED SYNTHESİS AND GAUSSİAN CALCULATİONS OF LONG CHAİN ALKYL DERİVATİVES THAT İNCLUDES İMİDAZOLİNE AND 1,4,5,6-TETRAHYDROPYRİMİDİNE RİNGS

Zehra DOGRU

Adiyaman University Graduate School of Natural and Applied Sciences Department of Chemistry

Supervisor	: Asst. Prof. Dr. Murat GENÇ
Year	: 2019, Number of pages: 109
	,
Jury	: Doc. Dr. Cumhur KIRILMIS
5	Asst Prof Dr Esra BARIM

In this thesis study; firstly, the long chain 2-substitue-imidazoline and 2substitue-1,4,5,6-tetrahydopyrimidine compounds were obtained by the reaction myristoyl chloride (or palmitoyl chloride) with ethylenediamine (or 1,3diaminopropane) in tetrahydrofuran at basic media. The obtained compounds structures were characterized by using ¹H-NMR, FT-IR techniques. In the second part; theoretical ¹H-NMR, FT-IR spectrums as well as HOMO-

LUMO energy levels, some electronic parameters such as electronegativity (χ), chemical hardness (η), MEP, thermodynamic parameters and theoretical UV-Vis spectrum were calculated by using Gaussian 09 program.

Keywords: İmidazoline; Tetrahydropyrimidine; DFT.

BEYAN

"İmidazolin ve 1,4,5,6-Tetrahidropirimidin Halkaları İçeren Uzun Zincirli Alkil Türevlerin Mikrodalga Destekli Sentezi ve Gaussian Hesaplamaları" başlıklı tezimde çalışmaların tamamen akademik kurallara ve etik değerlere sadık kalınarak yürütüldüğünü ve yazımda yararlandığım eserlerin kaynakçada gösterilenlerden oluştuğunu ayrıca alıntılardan bilimsel etiğe uygun atıf yaparak yararlanmış olduğumu beyan ederim.

> Zehra DOGRU imza

TEŞEKKÜR

Araştırmanın yürütülmesinde, planlanmasında, ve çalışmalarım süresince benden bilgi, destek ve ilgisini esirgemeyen, akademik anlamda gelişmemi sağlayan Sayın Dr. Öğr. Üyesi Murat GENÇ hocama sonsuz saygı ve teşekkürlerimi sunarım. Teze sağladığı katkılarından dolayı Doç. Dr. Zuhal Karagöz Genç hocama teşekkür ederim. Ayrıca IR spektrumunun alınmasındaki yardımlarından dolayı Prof. Dr. Süleyman Servi hocama teşekkür ederim. Adıyaman Üniversitesinde bana emeği geçen bütün hocalarıma teşekkür ederim. Bu çalışmamda yanımda olan ve her bakımdan yardımcı olan aileme ve arkadaşlarıma teşekkür ederim.

• •	•	
ICIND	FVI	[FD
IUIND	'L'N I	LEK
3		

ÖZET	I
ABSTRACT	. II
BEYAN	III
TEŞEKKUR	IV
IÇINDEKILER	. V
ÇIZELGELEK DIZINI	√ 11 / TTT
ŞEKILLEK DIZINI V SİMGELER VE KISALTMALAR	III V
1 GİRİS	.1
1.1. İmidazol	1
1.2. Piridin	1
1.3. Pirimidin	2
1.4. DFT (Yoğunluk Fonksiyon Teorisi)	2
1.5. Mikrodalga	4
1.5.1. Mikrodalganın Tarihçesi	4
2. ÖNCEKİ ÇALIŞMALAR	6
3. MATERYAL ve YÖNTEM	14
3.1. Kullanılan Araç ve Gereçler	14
3.2 Kullanılan Kimyasal Maddeler	14
3.3. Saflaştırma	14
3.4. Spektroskopik Ölçümler	15
3.6. Deneysel Çalışma	15
3.6.1. Geleneksel Metot ile Uzun Zincirli Alkil Türevlerinin Sentezi (1-4)	15
3.6.2.Atmosfer Basıncında Mikrodalga Destek Yöntemi ile Uzun Zincirli Alkil Türevlerinin Sentezi (1-4)	16
4. BULGULAR ve TARTIŞMA	17
4.1. Deneysel Bulgular	17
4.1.1. 2-tridesil-4,5-dihidro-1H-imidazol (1) Karakterizasyonu	17
4.1.2. 2-pentadesil-4,5-dihidro-1H-imidazol (2) Karakterizasyonu	20
4.1.3. 2-tridesil-3,4,5,6-tetrahidro-1H-pirimidin (3) Karakterizasyonu	23
4.1.4. 2-pentadesil-3,4,5,6-tetrahidro-1H-pirimidin (4) Karakterizasyonu	26
4.2. Teorik Çalışma	29
4.2.1. 2-tridesil-4,5-dihidro-1H-imidazol (1) Analizi	30
4.2.2. 2-pentadesil-4,5-dihidro-1H-imidazol (2) Analizi	44
4.2.3. 2-tridesil-3,4,5,6-tetrahidro-1H-pirimidin (3) Analizi	58
4.2.4. 2-pentadesil-3,4,5,6-tetrahidro-1H-pirimidin (4) Analizi	71
4.3. Tartışma	84

5.	SONUÇLAR ve ÖNERİLER	.91
6.	KAYNAKLAR	.92
7.	KİŞİSEL BİLGİLER	.96

ÇİZELGELER DİZİNİ

Çizelge 4.1 (1) No'lu Bileşiğin Farklı Çözücülerde Alınmış Deneysel UV	
Spektrumları	. 19
Çizelge 4.2 (2) No'lu Bileşiğin Farklı Çözücülerde Alınmış Deneysel UV	
Spektrumları	. 22
Çizelge 4.3 (3) No'lu Bileşiğin Farklı Çözücülerde Alınmış Deneysel UV	
Spektrumları	. 25
Çizelge 4.4 (4) No'lu Bileşiğin Farklı Çözücülerde Alınmış Deneysel UV	
Spektrumları	. 28
Çizelge 4.5 (1) No'lu bileşiğin teorik PED analizi	. 30
Çizelge 4.6 (1) No'lu bileşiğinin ¹ H-NMR kimyasal kayma değerleri	. 34
Çizelge 4.7 (1) No'lu bileşiğin Mulliken yük çizelgesi	. 35
Cizelge 4.8 (1) No'lu bileşiğin NBO analizi	. 35
Cizelge 4.9 (1) No'lu bileşiğin hesaplanan moleküler parametreleri	. 39
Çizelge 4.10 (1) No'lu bileşik için hesaplanmış termodinamik parametreler	. 40
Cizelge 4.11 (1) No'lu Bileşiğe ait maksimum absorbans değerleri	. 41
Cizelge 4.12 (2) No'lu bileşiğin teorik PED analizi	. 44
Cizelge 4.13 (2) No'lu bileşiğin ¹ H-NMR kimyasal kayma hesaplamaları	. 47
Cizelge 4.14 (2) No'lu bileşiğin Mulliken yük çizelgesi	. 48
Çizelge 4.15 (2) No'lu bileşiğin NBO analizi	. 48
Çizelge 4.16 (2) No'lu bileşiğin hesaplanan moleküler parametreleri	. 53
Çizelge 4.17 (2) No'lu bileşik için hesaplanmış termodinamik parametreler	. 54
Çizelge 4.18 (2) Bileşiğine ait maksimum absorbans değerleri	. 55
Cizelge 4.19 (3) No'lu bileşiğin teorik PED analizi	. 58
Çizelge 4.20 (3) No'lu bileşiğin ¹ H-NMR kimyasal kayma değerleri	. 62
Çizelge 4.21 (3) No'lu bileşiğin Mulliken yük çizelgesi	. 62
Çizelge 4.22 (3) No'lu bileşiğin NBO analizi	. 63
Çizelge 4.23 (3) No'lu bileşiğin hesaplanan moleküler parametreleri	. 66
Çizelge 4.24 (3) No'lu bileşik için hesaplanmış termodinamik parametreler	. 67
Çizelge 4.25 (3) Bileşiğe ait maksimum absorbans değerleri	. 68
Çizelge 4.26 (4) No'lu bileşiğin teorik PED analizi	. 71
Çizelge 4.27 (4) No'lu bileşiğin ¹ H-NMR kimyasal kayma değerleri	.75
Çizelge 4.28 (4) No'lu bileşiğin Mulliken yük çizelgesi	.76
Çizelge 4.29 (4) No'lu bileşiğin NBO metotları ile hesaplanan yük dağılımları	.76
Çizelge 4.30 (4) No'lu bileşiğin hesaplanan moleküler parametreleri	. 80
Çizelge 4.31 (4) No'lu bileşik için hesaplanmış termodinamik parametreler	. 81
Çizelge 4.32 (4) No'lu Bileşiğe ait maksimum absorbans değerleri	. 82
Çizelge 4.33 Mikrodalga destekli deneme reaksiyonları ve verim karşılaştırmaları	. 85
Çizelge 4.34 Bileşiklerin ΔE (eV) değerleri	. 88
Çizelge 4.35 Bileşiklerin R ² değerleri	. 89

ŞEKİLLER DİZİNİ

Şekil 1.1 Timin (4), urasil (5), sitozin (6) bileşiklerinin yapıları	2
Şekil 1.2 Timin (4), urasil (5), sitozin (6) bileşiklerinin yapıları	2
Şekil 1.3 Elektromanyetik spektrum	5
Şekil 2.1. (4-metoksibenzil) (1,4,5,6-tetrahidropirimidin-2-il) amin hidroiyodun	
sentezi	6
Şekil 2.2. Bileşiğin sentezi	7
Şekil 2.3. MMLK Boyaların Sentezi	8
Şekil 2.4. CLMPDI ve BPCLDI'nın optimize edilmiş geometrileri	9
Şekil 2.5. İmidazolin Türevlerinin Kimyasal Yapısı	9
Şekil 2.6. Tiazolo [2,3-a] pirimidin türevlerinin 9a-t sentezi	. 10
Şekil 3.1 Tez kapsamında yapılan deneylerin şematik gösterimi	. 15
Şekil 4.1 2-tridesil-4,5-dihidro-1H-imidazol bileşiği	.17
Şekil 4.2 (1) No'lu bileşiğin deneysel FT-IR spektrumu	.17
Şekil 4.3 (1) No'lu bileşiğin ¹ H-NMR spektrumu (CHCI ₃ -d, 300 MHz)	. 18
Şekil 4.4 2-pentadesil-4,5-dihidro-1H-imidazol bileşiği	. 20
Şekil 4.5 (2) No'lu bileşiğin deneysel FT-IR spektrumu	. 20
Şekil 4.6 (2) No'lu bileşiğin ¹ H-NMR spektrumu (CHCI ₃ -d, 300 MHz)	. 21
Şekil 4.7 2-tridesil-3,4,5,6-tetrahidro-1H-pirimidin bileşiği	.23
Şekil 4.8 (3) No'lu bileşiğin deneysel FT-IR spektrumu	.23
Şekil 4.9 (3) No'lu bileşiğin ¹ H-NMR spektrumu (CHCI ₃ -d, 300 MHz)	. 24
Şekil 4.10 2-pentadesil-3,4,5,6-tetrahidro-1H-pirimidin bileşiği	. 26
Şekil 4.11 (4) No'lu bileşiğin deneysel FT-IR spektrumu	.26
Şekil 4.12 (4) No'lu bileşiğin ¹ H-NMR spektrumu (CHCI ₃ -d, 300 MHz)	. 27
Şekil 4.13 (1) No'lu bileşiğin Gaussian 09'da optimize edilmiş hali	. 30
Şekil 4.14 (1) No'lu bileşiğin teorik FT-IR spektrumu	. 30
Şekil 4.15 (1) No'lu bileşiğin teorik ¹ H-NMR spektrumu (CHCl ₃ fazı)	. 33
Şekil 4.16 (1) No'lu bileşiğin teorik ¹ H-NMR spektrumu (gaz fazı)	. 34
Şekil 4.17 (1) No'lu bileşiğin deneysel ve teorik değerleri	. 34
Şekil 4.18 (1) No'lu bileşiğin HOMO-LUMO enerji düzeyleri ve enerji hesabı	. 37
Şekil 4.19 (1) No'lu bileşiğin teorik DOS spektrumu	. 38
Şekil 4.20 (1) No'lu bileşiğin MEP haritası	. 38
Şekil 4.21 (1) No'lu bileşik için hesaplanmış termodinamik parametreler	.40
Şekil 4.22 (1) No'lu.Bileşiğe ait teorik UV spektrumları	.41
Şekil 4.23 (2) No'lu bileşiğin Gaussian 09'da optimize edilmiş hali	. 44
Şekil 4.24 (2) No'lu bileşiğin teorik FT-IR spektrum	. 44
Şekil 4.25 (2) No'lu bileşiğin teorik ¹ H-NMR spektrumu (CHCl ₃ fazı)	.47
Şekil 4.26 (2) No'lu bileşiğin teorik ¹ H-NMR spektrumu (gaz fazı)	.47
Şekil 4.27 (2) No'lu bileşiğin deneysel ve teorik ¹ H-NMR değerleri	. 48
Şekil 4.28 (2) No'lu bileşiğin HOMO-LUMO enerji düzeyleri ve enerji hesabı	. 51
Şekil 4.29 (2) No'lu bileşiğin teorik DOS spektrumu	. 52
Şekil 4.30 (2) No'lu bileşiğin MEP haritası	. 52
Şekil 4.31 (2) No'lu bileşik için hesaplanmış termodinamik parametreler	. 54

Şekil 4.32 (2) No'lu.Bileşiğe ait teorik UV spektrumları	55
Şekil 4.33 (3) No'lu bileşiğin Gaussian 09'da optimize edilmiş hali	58
Şekil 4.34 (3) No'lu bileşiğin teorik FT-IR spektrumu	58
Şekil 4.35 (3) No'lu bileşiğin teorik ¹ H-NMR spektrumu (CHCl ₃ fazı)	. 61
Şekil 4.36 (3) No'lu bileşiğin teorik ¹ H-NMR spektrumu (gaz fazı)	61
Şekil 4.37 (3) No'lu bileşiğin deneysel ve teorik ¹ H-NMR değerleri	62
Şekil 4.38 (3) No'lu bileşiğin HOMO-LUMO enerji düzeyleri ve enerji hesabı	65
Şekil 4.39 (3) No'lu bileşiğin teorik DOS spektrumu	65
Şekil 4.40 (3) No'lu bileşiğin MEP haritası	65
Şekil 4.41 (3) No'lu bileşik için hesaplanmış termodinamik parametreler	67
Şekil 4.42 (3) No'lu.Bileşiğe ait teorik UV spektrumları	68
Şekil 4.43 (4) No'lu bileşiğin Gaussian 09'da optimize edilmiş hali	. 71
Şekil 4.44 (4) No'lu bileşiğin teorik FT-IR spektrum	. 71
Şekil 4.45 (4) No'lu bileşiğin teorik ¹ H-NMR spektrumu (CHCl ₃ fazı)	75
Şekil 4.46 (4) No'lu bileşiğin teorik ¹ H-NMR spektrumu (gaz fazı)	75
Şekil 4.47 (4) No'lu bileşiğin deneysel ve teorik ¹ H-NMR değerleri	76
Şekil 4.48 (4) No'lu bileşiğin HOMO-LUMO enerji düzeyleri ve enerji hesabı	79
Şekil 4.49 (4) No'lu bileşiğin teorik DOS spektrum	79
Şekil 4.50 (4) No'lu bileşiğin MEP haritası	79
Şekil 4.51 (4) No'lu bileşik için hesaplanmış termodinamik parametreler	. 81
Şekil 4.52 (4) No'lu.Bileşiğe ait teorik UV spektrumları	82
Şekil 4.53 (1),(2),(3) ve (4) Teorik hesaplamaları yapılan moleküller	. 85
Şekil 4.54 (1),(2),(3) ve (4) No'lu bileşiklerin ¹ H-NMR Spektrumları	. 86
Şekil 4.55 Bileşiklerin HOMO-LUMO enerji yüzeylerinin karşılaştırılması	87
Şekil 4.56 Bileşiklerin HOMO-1 – LUMO+1 enerji yüzeylerinin karşılaştırılması	. 88
Şekil 4.57 Bileşiklerin MEP haritası	89

SİMGELER VE KISALTMALAR

Simgeler:

CV	: Özgül ısı kapasitesi
E	: Sistemin Enerjisi
eV	: Elektron volt
Н	: Entalpi
J	: Etkileşme sabiti
Κ	: Kelvin
\mathbb{R}^2	: Regresyon katsayısı
S	: Entropi
S	: Singlet
t	: Triplet
λ	: Dalga Boyu
ΔE	: Enerjideki değişim
χ	: Elektronegatiflik
ω	: Elektrofilit İndeksi
δ	: Kimyasal kayma değeri
°C	: Santigrat derece
η	: Sertlik
σ	: Yumuşaklık

Kısaltmalar:

B3LYP	: 3 parametreli Becke karma metodu (DFT metodunun türevi)
BEND	: Eğilme Titreşimi
CDCl ₃	: Dötero kloroform
CHCl ₃	: Kloroform
DFT	: Yoğunluk fonksiyonel teorisi
DMF	: Dimetilformamid
DMSO	: Dimetilsülfoksit
E _{HOMO}	: HOMO'nun Enerjisi
E _{LUMO}	: LUMO'nun Enerjisi
Elumo-homo	: LUMO ve HOMO arasındaki enerji fark
FT-IR	: Furier transfer-infrared spektrometresi
HF	: Hartree-Fock Metodu
¹ H-NMR	: Proton nükleer magnetik rezonans spektrumu
HOMO	: En Yüksek Dolu Moleküler Orbital
IR	: İnfrared
LUMO	: En Düşük Boş Moleküler Orbital
MAOS	: Mikrodalga destekli organik sentez
MEP	: Moleküler elektrostatik potansiyel
mmol	: Milimol
MW	: Mikrodalga
NBO	: Doğal Bağ Orbitali
OUT	: Dışa Sallanma Titreşimi
ppm	: Milyonda bir kısım

PED	: Potansiyel enerji dağılımı
STRE	: Gerilme Titreșimi
TEA	: Trietilamin
THF	: Tetrahidrofuran
TORS	: Burulma Titreşimi
UV	: Ultraviole
UV-Vis	: Ultraviole ve görünür ışık

1. GİRİŞ

Organik bileşiklerin büyük bir kısmını oluşturan heterohalkalı bileşikler biyolojik etkilerinden dolayı yaşantımızda birçok alanda kullanılan ve doğada yaygın olarak bulunan önemli bir bileşiktir. Biyolojik aktivite göstermesi bakımından günümüzde en çok çalışılan biyoaktif heterosiklik bileşik grubudur. Halka üyesi olarak azot, oksijen, kükürt atomları içerenler de yaygın olarak kullanılmaktadır. İmidazol türevi biyolojik olarak önemi fazla olan bileşiklerdir. İmidazol türevlerinin birçoğu antibiyotik, antimikrobiyal, spasmoltik, antiviral, aktivitelere sahiptir [1].

1.1.İmidazol

İmidazol, heterosiklik bir organik bileşiktir. Ayrıca bir alkaloid olarak sınıflandırılmış olan imidazol, ana bileşik $C_3H_4N_2$ 'ye karşılık gelmektedir. İmidazoller, benzer halka yapısı olan ancak değişken ikame ediciler içeren bir heterosiklik sınıfıdır. Bu halka sistemi, histidin, histamin, B_{12} vitamini, pürin, biyotin gibi önemli biyolojik yapı bloklarında bulunur. Bunlardan en belirgini bir imidazol yan zincirine sahip olan aminoasit histidindir. Histidin birçok protein ve enzimde bulunur ve hemoglobinin yapısında ve bağlanma fonksiyonlarında hayati bir rol oynar. İmidazol bir baz ve zayıf asit olarak hareket edebilir [2].

1.2. Piridin

Altı üyeli hetero halkalı bileşikler arasında yalnızca azot taşıyanlar kararlı aromatik bileşiklerdir. Piridinin yapısal olarak benzen halkasına benzerdir fakat halka beş karbon ve bir azot atomu içeren düzlemsel bir yapıdır. Halka atomları sp² hibritleşmesi yapmışlardır ve p orbitallerinde aromatik π bulutuna katılan birer elektron taşırlar [3].

1.3. Pirimidin

İki tane azot atomu içeren altı üyeli hetero halkalı aromatik organik bileşiklere diazinler denir. Pirimidin 1 ve 3 konumunda azot atomu içeren, altı üyeli heterohalkalı bir diazin bileşiğidir (Şekil 1.1) [4].

Pirimidin yaygın olarak bulunan bir heterosiklik halkalı yapıdır. Pirimidin halkası vitamin B_1 (tiyamin)'de, riboflavinde ve folik asitte bulunmaktadır. Nükleik asitlerde bulunan urasil, timin ve sitozin bazları da pirimidin türevlerindendir (Şekil 1.2) [5].

Şekil 1.1 Timin (4), urasil (5), sitozin (6) bileşiklerinin yapılarıPirimidin (1)piridiazin (2)pirazin (3)

1.4. DFT (Yoğunluk Fonksiyon Teorisi)

DFT, teorik kimya bilimini açıklamakta kullanılan en önemli kuramsal yöntemlerden biridir. Bazı kimyasal kavramlar DFT çerçevesinde korelasyon göstermiştir. DFT'deki en temel parametre, tüm kimyasal miktarların ifade edildiği elektron yoğunluğu (r) 'dir. Elektronik yoğunluk (r) ile hesaplanan yapısal parametrelerle Schrödinger denklemi tarafından tek-elektron için hesaplanan dalga fonksiyonu ile karşılaştırılarak uygulanabilir. Teori, Schrodinger denklemini elektron korelasyon faktörleri ile çözmeye dayanan klasik kuantum mekaniğinden daha basit yöntemdir. Bu nedenle kimyasal yapı-aktivite, reaktivitesi ve dinamiklerinin anlaşılmasında kolaylıklar sağlamaktadır [6].

DFT yöntemleri, yapısal ve spektral özelliklerin yanı sıra, çeşitli moleküler özelliklere sahip organik bileşikleri deneysel yöntemlerle karşılaştırmalı olarak incelenmesinde önemli bir rol oynamaktadır. Hibrit fonksiyonel B3LYP ise alternatif bir yöntem olan Harthart-Fock yöntemine göre daha düşük hesaplama süresi sunması ve genellikle benzer sonuçlar vermesi nedeniyle organik bileşiklerin analizinde sıklıkla kullanılmaktadır.

En düşük konformasyona sahip yapının optimize edilebilmesi için genellikle B3LYP/6-311+G(d,p) yöntemi kullanılmaktadır. Optimize edilmiş molekülleri hesaba katarak, gerçekleştirilen frekans hesaplama sonuçları gerçek moleküllerin en düşük enerjili halini ifade etmektedir.

Moleküler orbitallerde dolu olan en yüksek enerjili orbital (HOMO) ve boş olan en düşük enerjili moleküler orbital (LUMO) analizleri; HOMO molekülün elektron verme yeteneğini gösterirken, LUMO molekülün elektron kabul kabiliyetini karakterize eder. HOMO enerjisi iyonlaşma potansiyeli ile doğrudan ilgiyken, LUMO enerjisi elektron ilgisi ile doğrudan ilişkilidir. HOMO-LUMO enerji aralık bandı ise molekülün kinetik stabilitesini, kimyasal reaktivitesini, optik polarizasyonun yanı sıra, kimyasal sertlik- yumuşaklık hakkında da bilgi vermektedir.

Moleküler elektrostatik potansiyel (MEP), grafiği sabit elektron yoğunluğu yüzeyine dayanarak çizilen elektrostatik potansiyelin bir grafiğidir. Elektrofilik atak ve nükleofilik reaksiyonların yanı sıra hidrojen bağlanma etkileşimlerinin yerlerinin belirlenmesinde faydalı bir tanımlayıcıdır. MEP'in önemi aynı anda renk derecelendirmesi ile molekülün pozitif, negatif ve nötr elektrostatik bölgelerini göstermesidir. MEP haritalarında pozitif faz mavi, negatif faz kırmızı ve nötr faz ise yeşille ifade edilmektedir [7].

1.5. Mikrodalga

1.5.1. Mikrodalganın Tarihçesi

Mikrodalgaların ısıtma amacıyla yararlanılacağı düşüncesi Dr. Spencer tarafından 1946 senesinde radar çalışmaları ile ortaya çıkarılmıştır. 1986 Yılında Robert Gedya (Laurentian Üniversitesi, Kanada) tarafından sürdürülen bir çalışmada ise mikrodalgaların kimyasal reaksiyonlar için gerekli olan klasik ısıtma yöntemlerine oranla, çok daha hızlı ısıttığı gözlemlenmiştir. Mikrodalgaların kimyasal reaksiyonlarda ısıtma amacıyla kullanımı sayesinde çok sayıda kimyasal reaksiyon daha yüksek verimde ve daha kısa zamanda gerçekleştirilmiştir.

Mikrodalga radyasyonu elektrik alanı ile su veya dielektrik sabiti yüksek diğer moleküllerin çözücüleri arasında geniş dipol moment etkileşimi sayesinde ısıtma sağlar. Mikrodalga radyasyonları çeşitli kimyasal maddelerin sentezi için yeni, verimli ve çevreye zararsız bir yöntem olarak kullanılmaktadır [8].

- Kükürt, teflon, kağıt, cam, plastik gibi yalıtkan maddeler mikrodalga ışınlarını geçirirler fakat ısınmazlar. Teflon yüksek derecede etkisiz bir geçirgen olduğundan mikrodalga fırınlarda reaksiyon kabı olarak da kullanılmaktadırlar.
- Mikrodalga yansıtıcı maddeler metaller gibi iletken olup mikrodalga enerjiyi yansıtırlar ama ısınmazlar.
- Mikrodalga soğurucu maddeler su gibi polar maddeler olup mikrodalga ışınlarını soğurarak hızlıca ısınırlar.

Mikrodalga ile daha yüksek verimlerde ürün eldesi sağlanmaktadır [9].

Şekil 1.3 Elektromanyetik spektrum

Elektromanyetik spektruma göre değerlik elektronlarını UV görünür bölge ışınları uyarabildiği için kimyasal reaksiyonların başlatılmasında yani fotokimyada bu dalga boyları kullanır. İnfrared ışıma minimum frekanslarda bağ titreşimlerine sebep olmaktadır. Mikrodalgalar moleküler dönme hareketlerini oluşturmaya yetecek miktarda enerjiyi taşımaktadır. γ ve x-ışınları ise iç kabuklardaki elektronları uyarılabilecek enerjiye sahiptir [10].

Bu çalışmada, imidazolin ve pirimidin yapısındaki biyolojik aktivite göstermesi beklenen sekiz bileşik sentezi mikrodalga kullanılarak yapılmıştır. Bu bileşik sentezlerinde FT-IR, UV, ¹H-NMR, mikrodalga verileri ve analiz sonuçları kullanılarak aydınlatılmıştır. Elde edilen bileşiklerin Gaussian 09 paket programıyla teorik hesaplamaları yapılıp deneysel verilerle karşılaştırılmıştır.

2. ÖNCEKİ ÇALIŞMALAR

Genç ve arkadaşlarının [11] yaptığı çalışmada, (4-metoksibenzil) (1,4,5,6tetrahidropirimidin-2-il) aminhidroiyodür bileşiğini; 2-metilmerkapto-1,4,5,6tetrahidropirimidinhidroiyodür ile 4-metoksibenzilaminin reaksiyonu sonucunda elde etmişlerdir. Çalışmada elde edilen bileşiğin HOMO-LUMO analizleri, MEP, Mulliken hesaplamaları yapılmış, ayrıca in vivo ortamda antihistaminik etkisi incelenmiştir. Teorik hesaplamalar ve antihistaminik aktivite uyum içerisinde bulunmuştur.

Şekil 2.1. (4-metoksibenzil) (1,4,5,6-tetrahidropirimidin-2-il) amin hidroiyodun sentezi

Ahmad ve arkadaşları [12] yaptığı çalışmada, 3a, 8a-dihidroksi-8-okso-1,3,3a, 8a-tetrahidroindeno [1,2-d] imidazol-2 (1H)-iminyum klorür bileşiğini sentezlenmiş ve yapısı aydınlatılmıştır. Ayrıca Gaussian B3LYP-6-311(d,p) temel setini kullanarak molekülerin teorik FT-IR, (¹H ve ¹³C) NMR, UV-Vis spektrumlarını elde etmişlerdir. Elde edilen sonuçlara göre teorik sonuçların deneysel verilerle uyumlu olduğu belirlenmiştir. Bileşiğin HOMO-LUMO düşük enerji bant aralığı molekülün daha az kinetik stabilite ve yüksek kimyasal reaktivitesi ile ilişkilendirilmiştir. Bileşiğin elektrofilik ve nükleofilik bölgeleri MEP kullanılarak açıklanmıştır.

Şekil 2.2. Bileşiğin sentezi

Yılmaz'ın [13] yaptığı çalışmada, (Z) -4- (2- (3,5-dibromo-2-hidroksi-4metoksibenziliden)hidrazinil)benzonitril bileşiğini (DHMB); 3,5-dibromo-2-hidroksi-4-metoksi benzaldehid bileşiği ile 4-siyanofenilhidrazin hidroklorürün kondenizasyon reaksiyonu ile sentezlenmiştir. Elde edilen bileşiklerin teorik ve deneysel spektral verileri karşılaştırılmış, bunlara ek olarak bazı moleküler parametreleri (HOMO-LUMO enerjileri, termodinamik parametreleri) hesaplanmıştır. DMBH'nin UV spektrumları, çözücü etkisini incelemek için farklı çözücüler içinde alınmıştır. TD-DFT yöntemi ve Kamlet-Taft çoklu denklemine göre Solvent-dipolarite parametrelerinin daha etkili olduğu bulunmuştur. Çözücü polarizasyonunun Katalan denklemine göre DMBH'nin absorbans bandını belirlediği bildirilmiştir. DMBH'nin hesaplanmış elektronegatifliği, gaz fazı haricinde Global reaktivite parametresine göre DMSO'da en yüksek bulunmuştur. Kimyasal sertlik, gaz fazı hariç etanolde en düşük olarak hesaplanmıştır.

Kadam ve arkadaşları [14] tarafından yapılan çalışmada, 4- (Dietilamino) salisilaldehit bazlı Salen ligandları sentezlenmiş ve B3LYP/6-311G temel seti kullanılarak MEP, NBO, NLO, HOMO-LUMO, global kimyasal reaktivite tanımları incelenmiştir. Kamlet-Taft ve Katalan çok-lineer absorpsiyon ve emisyon spektrum analizi, her iki spektrumda yüksek enerji bandına kaymanın solvent dipolarite faktöründen kaynaklandığı belirlenmiştir.

Şekil 2.3. MMLK Boyaların Sentezi

Thomas ve arkadaşlarının [15] yaptığı çalışmada; iki imidazol türevi (2-kloro-1-(4-metoksifenil)-4,5-dimetil-IH-imidazol (CLMPDI) ve 1-(4-bromofenil)-2-kloro-4,5-dimetil-1H-imidazol (BPCLDI) çözücüsüz ortamda elde edilmiştir. Deneysel ve teorik veriler kullanılarak bileşiklerin yapı ve reaktivite analizleri yapılmıştır. DFT/B3LYP teorisi ile elde edilen FT-IR, FT-Raman ve NMR verileri deneysel değerlerle uyumlu bulunmuştur. DFT hesaplamaları ile MEP, ortalama lokal iyonizasyon enerjisi (ALIE), Fukii fonksiyonları ve bant ayrışma enerjileri (BDE) hesaplanmıştır. Sudaki kararlılıkları moleküler dinamik simülasyon tekniği ile belirlenirken, aspulvinondimetilallil transferaz proteinine doklanmıştır. CLMPDI bileşiği 4farklı gram pozitif ve gram negatif bakteri türüne karşı aktivite gösterirken, BPCLDI bileşiği yalnızca gram pozitif bakteri türlerine karşı aktivite göstermiştir. Hiperpolarizibilitesi NLO hesaplamalarında üreden sırasıyla CLMPDI ve BPCLDI bileşikleri için 20.15 ve 6.10 daha fazla bulunmuştur.

Şekil 2.4. CLMPDI ve BPCLDI'nın optimize edilmiş geometrileri.

Gouron ve arkadaşlarının [16] yaptığı çalışmada; farklı imidazolinler türevlerinin Fe₂O₃ yüzeyinde kendiliğinden toplanan tek tabakalı (SAM) adsorpsiyonu ve korozyon inhibisyon mekanizmaları DFT yöntemi ile incelenmiştir. Kuantum kimyasal hesaplamaları ile imidazolin/yüzey etkileşimleri incelenmiştir. En kararlı konformasyonun yüzeyde H-bağları ile bağlanan imidazolin moleküllerinin tabakalarının olduğu belirlenmiştir. İmidazolin türevlerinin alkil gruplarının uzunluklarının yüzeyde hidrofobik bir tabaka oluşturdukları, enerji ve yapısal özelliklerini de beraberinde değiştirdikleri belirlenmiştir.

Şekil 2.5. İmidazolin Türevlerinin Kimyasal Yapısı

Şekil 2.6. Tiazolo [2,3-a] pirimidin türevlerinin 9a-t sentezi

Nural ve arkadaşlarının [17] yaptığı çalışmada; metil 2-(4-klorofenil)-7a-((4klorofenil)karbomotiyoil)-1-okso-5,5-difenil-3-tiyokso-hekzahidro-lH-pirolo-[1,2e]imidazol-6-karboksilat bileşiği; dimetil 5,5-difenilpirolidin-2,4-dikarboksilat ve 4klorofenil izotiyosiyanatın metil 2-(dimetilamino) piridin varlığında siklik katılma reaksiyonu ile sentezlenmiştir. Yapısal karakterizasyon NMR, FT-IR, MS ve HRMS teknikleri kullanılarak aydınlatılırken, XRD tekniği ile tek kristal yapı aydınlatılmıştır. DFT teorisi ve Hartree-Fock hesaplamaları ile 1H ve 13C NMR teorik değerleri elde edilmiştir. HİPERQUAD bilgisayar programında 0.1 mol/L NaCI iyonik zemin olarak alınarak 25 °C'de %25'lik dimetil süloksit/su hidroorganik cözücüsüyle potansiyometrik titrasyon yöntemi ile asit ayırma sabitleri hesaplanmıştır. Bileşiğin NH, entiyol ve enol grupları sayesinde 4 asit ayrışma sabitine sahip olduğu belirlenmistir. Antibakteriyel özellikleri belirlemek için S. aureus, B. subtilis, A. hydrophila, E. coli ve A. baumannii antibakteriyel ajanlar olarak kullanılırken, tüberküloz için ise Maykobakteriyel özellik H37Rv'de araştırılmıştır. Antibakteriyel aktivite değerleri 31.25-62.5 mg/mL aralığında bulunmuştur. MIC değeri ise 40 mg/MI olarak elde edilmiştir.

Şekil 2.9 BTP sentezi

Sudharsan ve arkadaşlarının [18] yaptığı çalışmada, 2-(4,5-dihidrotiyazol-2il)anilin (2) ve 2-(4,5-dihidro-1H-imidazol-2-il)anilin (3) ligandlarını kullanarak Palladyum (II)komplekslerini sentezlemis, elde edilen komplekslerin reaktivite, spektroskopik karakterizasyon ve katalitik aktivitelerini calismislardir. [Pd(COD)Cl2]'nin 2 nolu ligand ile reaksiyonu sonucunda kompleksin liganda oranının 1:1 ve 1:2 oranlarında elde edildiği belirlenmiştir. Mononükleer kompleksler sırasıyla, PdCl₂{ κ^2 -N,S-2-(4,5-dihidrotiyazol-2-il)anilin} (4), Pd{ κ^2 -N,N'-2-(4,5dihidrotiyazol-2-il)anilin}2 (5) ve Pd{ κ_1^2 -N,N'- κ_2^2 -N,S-2-(4,5-dihidrotiyazol-2il)anilin}₂ (6) bileşikleridir. Nötr Pd(II) kompleksleri ise PdCl₂{ κ^2 -N,N'-(4,5dihidro-1H-imidazol-2-il)anilin $\{$ (7) and Pd $\{\kappa^2 - N, N^2 - 2 - (4, 5 - dihidro - 1H - imidazol - 2 - in)$ il)anilin}2 (8) bileşikleridir. 4-8 nolu bileşikler asit ortamında asit klorürler ve aril halit bileşiklerinin boronik asitle çapraz bağlanma reaksiyonu vermişlerdir. 4 nolu kompleks unsimetrik ketonların üretimi için sahip olduğu TOF = 19.8 min^{-1} değeriyle etkili bir katalizör olarak bulunurken, kompleks 7'de TOF=19.8 min⁻¹ değeriyle biarillerin üretiminde etkili bir katalizör olarak bulunmuştur.

Şekil 2.10. Paladyum Komplekslerinin Sentezi

Moni ve arkadaşlarının [19] yaptığı çalışmada, iki çekirdekli [Re(CO)3(μ , κ 2-S,N-thpymS)]2 (1)'in difosfinlerle olan reaksiyonu araştırılmıştır. 298 K'de difosfinlerle mononükleer [Re(CO)3(κ 1-dppm)(κ 2-S,N-thpymS)] (2) kompleksini elde etmişlerdir. Toluen ortamında gerçekleştirdikleri sentezde ise CO grubunun ayrılmasıyla binükleer [Re2(CO)4(μ -dppm)(μ , κ 2-S,N-thpymS)2] (3) kompleksini elde etmişlerdir. 1 nolu bileşiğin difosfinlerle reaksiyonu sonucunda ise [Re(CO)3(κ 2-S,N-thpymS)]2(μ , κ 1, κ 1-dppe) (4) bileşiği elde edilmiştir. 4 nolu kompleksin kristalografik olarak analiz edilen iki farklı izomeri elde edilmiştir. 1 nolu bileşiğin 383 K'deki reaksiyonu ile [Re(CO)2(κ 1-dppe)2(κ 2-S,N-thpymS)] (5) elde edilmiştir. Reaksiyon sonuçlarına göre elde edilen ürünlerin çoğunlukla reaksiyon şartlarına ve difosfinlerin yapısına bağlı olduğu belirlenmiştir.

Şekil 2.11. Solda ve sağda dppe ligandının P-C-C-P çerçevesindeki projeksiyonları

Memarian ve arkadaşlarının [20] yaptığı çalışmada 4,6-diaril-2-okzo-1,2,3,4tetrahidropirimidinlere substitüsyon etkisini NMR ve DFT çalışmaları ile araştırmışlardır. Çalışmada 4- ve 6- aril halkalarının her ikisinde de yer alan farklı pozisyonlarda içerdiği metoksi gruplarının etkisi NMR piklerindeki kimyasal kaymalarla tespit etmişlerdir. Bu etkilerin heterosiklik halkanın 5 nolu pozisyonunda sübstitüent içermeyen özellikle sterik etkilerin etkisi aril sübstitüsyonların σ - veya π etkileşimi ile daha iyi gözlemlenebildiğini belirlemişlerdir.

 $R = CH_3, OC_2H_5, NHAr'$

Şekil 2.12. Oksa-1,2,3,4-tetrahidropirimidin

Memarian ve arkadaşlarının [21] yaptığı çalışmada, 2-okso-1,2,3,4tetrahidropirimidinlere 1-, 4- ve 5-pozisyonlarında bulunan sübstitüe grupların sterik ve elektronik etkilerini DFT tekniğinin B3LYP/6-31++G(d,p) temel setini kullanarak araştırmışlardır. Halka düzlemselliğinden kaynaklanan C₄ ve N₁ atomlarından kaynaklanan sapmalar nedeniyle heterosiklik halka psedo-kayık konformasyonu tercih ettiği tespit edilmiştir. Aril grupları içerisinde yer alan ilave sübstitüe grupla nedeniyle C₄ atomu psedo-aksiyel konumu işgal ettiği belirlenmiştir. C₄ ve N₁ atomlarının kayık düzleminden uzaması nedeni ve 5-CO grubunun heterosiklik halkaya doğru yönelmesinin nedeni çeşitli pozisyonlardaki sübstitüentlerin elektronik ve sterik etkilerine bağlı olduğu belirlenmiştir. 4-fenil sübstitüe için halka ters çevrilme hesaplamaları 1 pozisyonunda yer alan sübstitüentin sterik etkisinden kaynaklanmaktadır.

Memarian ve arkadaşlarının [22] yaptığı çalışmada 5 nolu konumunda sübstitüe olmayan çeşitli 4,6-diaril-2-okso-1,2,3,4-tetrahidropirimidinlerin yapısal, elektronik ve bağlanma karakterlerini B3LYP / 6–31 ++ G (d,p) seviyesinde DFT yöntemini kullanarak analiz etmişlerdir. Optimize edilen yapılardan heterosiklik halkanın C₄ ve C₆ konumlarında konumlanan farklı aril pozisyonları için optimize edilen yapılar, elektron sunucu ve elektron çekici sübstitüentlerden elde edilen karakteristik parametreler sübstitüentlerin sterik ve elektronik etkilerini açıklamak için kullanılmıştır.

3. MATERYAL ve YÖNTEM

3.1. Kullanılan Araç ve Gereçler

Farklı büyüklükteki beherler, farklı büyüklükteki deney balonları, huniler, bagetler, pipetler, pisetler, saat camı, süzgeç kâğıtları, küçük numune şişeler, döküm ayaklar ve bunzen kıskaçları, deney tüpleri, damlalıklar, manyetik balıklar

- Tartım için; Adventurer Pro AV264C (max. 260gr) model terazi,

-Isıtma ve karıştırma işlemleri için; termostatlı ve düz tablalı magnetik ısıtıcı

- Erime noktası tayini için; STUART SMP30 model erime noktası tayini cihazı,

- GAUSSIAN09 ve GAUSS VIEW05 paket programları,

- ¹H-NMR spektrumu için; BRUKER 300 MHz, (İnönü Üniversitesi, Malatya) Spektrum cihazı,

- FT-IR spektrumları için PERKIN ELMER Spektrum two FT-IR (ATR) spektroskopi cihazı,(Fırat üniversitesi,Elazığ)

- UV spektrumları için PERKIN ELMER Spektrum 100 spektroskopi cihazı,

- Mikrodalga cihazı: Cem Discover LabMate

3.2 Kullanılan Kimyasal Maddeler

1,3-diaminopropan, etilendiamin, tetrahidrofuran, trietilamin, miristoil klorür, palmitoil klorür, stearoil klorür, louroil klorür reaktifleri Sigma-Aldrich'den temin edilerek ekstra bir saflaştırma işlemi yapılmadan kullanıldı.

Çözücü olarak; kloroform, aseton, etanol, metanol, dimetilsülfoksit (DMSO), dimetilforamit (DMF), tetrahidrofuran (THF), dioksan, hekzan Sigma-Aldrich'den temin edilerek ekstra bir saflaştırma işlemi yapılmadan kullanıldı.

3.3. Saflaştırma

Saflaştırma kristallendirme yöntemiyle yapıldı.

3.4. Spektroskopik Ölçümler

Sentezlenen bileşiklerin karakterizasyonu;

¹H-NMR spektrofotometresi BRUKER 300 MHz, (İnönü Üniversitesi, Malatya)

Infrared spektrofotometresi PERKIN ELMER Spektrum two FT-IR (ATR) (Fırat Üniversitesi, Elazığ)

UV spektrumları için PERKIN ELMER Spektrum 100 spektrum cihazı kullanılarak gerçekleştirildi.

3.5. Tepkime şeması

x=12,14

Şekil 3.1 Tez kapsamında yapılan deneylerin şematik gösterimi

3.6. Deneysel Çalışma

3.6.1. Geleneksel Metot ile Uzun Zincirli Alkil Türevlerinin Sentezi (1-4)

50 ml THF çözücüsü içeren 100 ml'lik deney balonuna; 1 mmol diamin (etilendiamin, diaminopropan), 1,1 mmol TEA bileşiği oda sıcaklığında eklendi. reaksiyona magnetik karıştırıcıda oda sıcaklığında 30 dakika devam edildi. Daha sonra reaksiyon ortamına damla damla 1,1 mmol açil klorür bileşiği (miristoil klorür veya

palmotoil klorür) ilave edildi. Reaksiyona çözücünün kaynama noktasında 4 saat devam edildi. Karışım sıcak olarak süzüldü. Vakum altında döner buharlaştırıcıda çözücüsü uzaklaştırıldı. Ham ürün kloroformda kristallendirildi. [23-45]

3.6.2.Atmosfer Basıncında Mikrodalga Destek Yöntemi ile Uzun Zincirli Alkil Türevlerinin Sentezi (1-4)

1 mmol diaminopropan, 1.1 mmol TEA, 1.1 mmol palmotoilklorür 20 ml THF de çözülerek 50 mL'lik tek ağızlı deney balonuna konuldu. Reaksiyon geri soğutucu altında mikrodalga cihazında 50 W, 1dk reaksiyona çıkma süresi, 10 dk sıcaklıkta bekleme süresi ve 80 °C' parametreleri kullanılarak gerçekleştirildi. Karışım sıcak olarak süzüldü. Vakum altında döner buharlaştırıcıda çözücüsü uzaklaştırıldı. Ham ürün kloroformda kristallendirildi.

4. BULGULAR ve TARTIŞMA

4.1. Deneysel Bulgular

4.1.1. 2-tridesil-4,5-dihidro-1H-imidazol (1) Karakterizasyonu

Şekil 4.1 . 2-tridesil-4,5-dihidro-1H-imidazol bileşiği

Kimyasal formül: C₁₆H₃₂N₂ Molekül ağırlığı: 252 Erime noktası: 120 °C % verim: 86,6 (MW %92,3)

IR (ATR, cm⁻¹): 3299 (N-H grilme titreşimi), 2953-2847 (alifatik C-H gerilme tireşimi), 1636 (C=N gerilme titreşimi), 1561 (N-H eğilme titreşimi). ¹H-NMR: (300 MHz, CHCI₃-d) 6.19 (H₂, 1H), 3.40 (H_{5,8}, 2H), 1.63 (H₁₁, 2H), 1.28 (H_{14,17,20,23,26,29,32,35,38,41,44, 2H), 0.90 (t, J= 6 Hz, H₄₇, 3H)}

Şekil 4.2 (1) No'lu bileşiğin deneysel FT-IR spektrumu

Şekil 4.3 (1) No'lu bileşiğin ¹H-NMR spektrumu (CHCI₃-d, 300 MHz)

Çizelge 4.1 (1) No'lu Bileşiğin Farklı Çözücülerde Alınmış Deneysel UV Spektrumları

4.1.2. 2-pentadesil-4,5-dihidro-1H-imidazol (2) Karakterizasyonu

Şekil 4.4 2-pentadesil-4,5-dihidro-1H-imidazol bileşiği

Kimyasal formül: C₁₈H₃₈N₂ Molekül ağırlığı: 282 Erime noktası: 111 °C % verim: 84,5 (MW % 91.7)

IR (**ATR, cm**⁻¹): 1301 (N-H gerilme titreşimi), 2955-2847 (C-H gerilme titreşimi), 1634 (C=N gerilme titreşimi), 1554 (N-H eğilme titreşimi).

¹**H-NMR:** (300 MHz, CHCI₃-d) 6.20 (H₂, 1H), 3.42 (H_{5,8}, 2H), 1.63 (H₁₁, 2H), 1.30 (H_{14,17,20,23,26,29,32,35,38,41,44,47,50, 2H), 0.92 (t, J=6 Hz, H₅₃, 3H)}

Şekil 4.5 (2) No'lu bileşiğin deneysel FT-IR spektrumu

14.5 13.5 12.5 11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Şekil 4.6 (2) No'lu bileşiğin ¹H-NMR spektrumu (CHCI₃-d, 300 MHz)

Çizelge 4.2 (2) No'lu Bileşiğin Farklı Çözücülerde Alınmış Deneysel UV Spektrumları

4.1.3. 2-tridesil-3,4,5,6-tetrahidro-1H-pirimidin (3) Karakterizasyonu

Şekil 4.7 2-tridesil-3,4,5,6-tetrahidro-1H-pirimidin bileşiği

Kimyasal formül: C₁₇H₃₄N₂ Molekül ağırlığı: 266 Erime noktası: 109,5 °C % verim: 74,4 (MW % 85.2)

IR (ATR, cm⁻¹): 3288 (N-H gerilme titreşimi), 2960-2849 (C-H gerilme titreşimi), 1634 (C=N gerilme titreşimi), 1559 (N-H eğilme titreşimi).
¹H-NMR: (300 MHz, CHCI₃-d) 6.20 (H₂, 1H), 3.31 (H_{5,8,11}, 2H), 2.21 (H₁₄, 2H), 1.20 (H<sub>17,20,23,26,29,32,35,38,41,44,47, 2H), 0.90 (t, *J*= 6 Hz, H₅₀, 3H)
</sub>

Şekil 4.8 (3) No'lu bileşiğin deneysel FT-IR spektrumu

Şekil 4.9 (3) No'lu bileşiğin ¹H-NMR spektrumu (CHCI₃-d, 300 MHz)

Çizelge 4.3 (3) No'lu Bileşiğin Farklı Çözücülerde Alınmış Deneysel UV Spektrumları

4.1.4. 2-pentadesil-3,4,5,6-tetrahidro-1H-pirimidin (4) Karakterizasyonu

Şekil 4.10 2-pentadesil-3,4,5,6-tetrahidro-1H-pirimidin bileşiği

Kimyasal formül: C₁₉H₃₈N₂ Molekül ağırlığı: 294 Erime noktası: 107 °C % verim: 92,9 (MW % 96)

IR (ATR, cm⁻¹): 3288 (N-H gerilme titreşimi), 2955-2847 (C-H gerilme titreşimi), 1634 (C=N gerilme titreşimi), 1565 (N-H eğilme titreşimi). ¹H-NMR: (300 MHz, CHCI₃-d) δ 6.19 (H₂,1H), 3.31 (j=6 Hz, H_{5,8,11}, 2H), 2.21 (H₁₄, 2H), 1.30 (H_{17,20,23,26,29,32,35,38,41,44,47,50,53, 2H) 0.90 (t,*J*= 6 Hz, H₅₆, 3H)}

Şekil 4.11 (4) No'lu bileşiğin deneysel FT-IR spektrumu

Şekil 4.12 (4) No'lu bileşiğin ¹H-NMR spektrumu (CHCI₃-d, 300 MHz)

Çizelge 4.4 (4) No'lu Bileşiğin Farklı Çözücülerde Alınmış Deneysel UV Spektrumları

4.2. Teorik Çalışma

Çalışmanın teorik kısmında GAUSSİAN 09 paket programı kullanılarak sentezlenen maddelerin her bir tekli bağı (sigma bağları) semi empirik yöntem ile en düşük enerjili konformerleri belirlendi. B3LYP/6-311+G(d,p) yöntemi ile optimize edildi. Aynı program kullanılarak DFT metodu ile teorik hesaplamaları yapıldı. Gauss View 5.0 kullanılarak; maddelerin üç boyutlu görünümleri, NBO analizi sonuçları, teorik ¹H-NMR spektrumları, teorik FT-IR, teorik UV, molekül orbital gösterimi ve HOMO-LUMO enerji yüzeyleri ve enerji değişimleri hesaplandı [46-52].

4.2.1. 2-tridesil-4,5-dihidro-1H-imidazol (1) Analizi

Şekil 4.13 (1) No'lu bileşiğin Gaussian 09'da optimize edilmiş hali

Şekil 4.14 (1) No'lu bileşiğin teorik FT-IR spektrumu

Çizelge 4.5 (1) No lu blieşigin teorik PED analızı							
STRE	N_2H_3	f3587(100)					
STRE	C ₅ H ₆	f3085(32)	f3075(62)				
STRE	C_5H_7	f3013(91)					
STRE	C ₈ H ₉	f3085(58)	f3075(36)				
STRE	C ₈ H ₁₀	f2990(94)					
STRE	$C_{11}H_{12}$	f3006(86)					
STRE	$C_{11}H_{13}$	f3095(86)					
STRE	$C_{14}H_{15}$	f3060(30)	f3024(14)	f3023(24)			
STRE	$C_{14}H_{16}$	f3060(23)	f3023(42)				
STRE	C ₁₇ H ₁₈	f2997(14)	f2994(18)	f2992(14)			
STRE	C17H19	f3024(11)	f3012(18)	f2994(12)			

Cizelge 4.5 (1) No'lu bilesiğin teorik PED analizi

4. BULGULAR ve TARTIŞMAZehra DOGRU

Çizelge 4.5 (1) No'lu bileşiğin teorik PED analizi	(devamı)

STRE	$C_{20}H_{21}$	f3034(10)	f3008(16)	f3003(17)	f2994(10)	
STRE	C20H22	f3047(11)	f3034(11)	f3012(22)	f3008(11)	f2994(10)
STRE		f3047(13)	f3008(24)	f2992(14)		
STRE	C23H25	f3047(12)	f3008(21)	f2992(15)		
STRE	C26H27	f3034(10)	f3008(15)	f2997(14)	f2992(10)	
STRE	C ₂₆ H ₂₈	f3034(12)	f3008(27)	f2997(11)		
STRE	C ₂₉ H ₃₀	f3012(15)	f2992(27)			
STRE	C ₂₉ H ₃₁	f3056(11)	$f_{3008(13)}$	f3008(12)	f2992(25)	
STRE	C ₃₂ H ₃₃	f3056(10)	f3008(12)	f3003(22)	f2995(19)	f2991(13)
STRE	C ₃₂ H ₃₄	f3056(26)	f3047(12)	f3017(11)		
STRE	C35H36	f2997(16)	f2995(10)	f2994(15)	f2991(11)	
STRE	C ₃₅ H ₃₇	f3024(24)	× /			
STRE	C ₃₈ H ₃₉	f3051(13)	f3028(23)	f3020(11)	f2998(17)	
STRE	C ₃₈ H ₄₀	f3051(10)	f3028(13)	f2998(17)	f2994(10)	
STRE	$C_{41}H_{42}$	f3051(35)	f3020(22)	f3016(17)		
STRE	C ₄₁ H ₄₃	f3051(14)	f3007(14)	f2998(21)	f2992(11)	f2991(17)
STRE	C ₄₄ H ₄₅	f3028(27)	f3007(23)	f2998(15)		
STRE	C ₄₄ H ₄₆	f3028(22)	f3007(45)	· · · ·		
STRE	C ₄₇ H ₄₈	f3082(73)	f3017(14)	f3016(10)		
STRE	C ₄₇ H ₄₉	f3082(13)	f3078(44)	f3017(18)	f3016(18)	
STRE	C ₄₇ H ₅₀	f3082(13)	f3078(43)	f3017(20)	f3016(12)	
STRE	N_4C_1	f1692(76)				
STRE	N_2C_1	f1457(14)	f726(14)			
STRE	C ₁₁ C ₁	f650(13)				
STRE	N_2C_8	f1049(35)	f1046(19)	f1037(11)		
STRE	N ₄ C ₅	f999(26)	f986(23)			
STRE	$C_{17}C_{14}$	f1064(21)	f1049(11)			
STRE	$C_{20}C_{17}$	f1064(29)	f1020(10)	f993(10)		
STRE	$C_{23}C_{20}$	f1066(23)	f984(13)			
STRE	$C_{26}C_{23}$	f1066(30)				
STRE	$C_{29}C_{26}$	f1066(19)	f1064(16)	f993(11)		
STRE	$C_{32}C_{29}$	f1064(10)	f1049(10)	f1037(11)		
STRE	C ₃₅ C ₃₂	f1078(13)	f1020(10)	f899(14)		
STRE	$C_{41}C_{38}$	f1086(22)				
STRE	$C_{44}C_{41}$	f1057(19)	f903(19)			
STRE	$C_{47}C_{44}$	f1057(29)	f1046(11)	f903(14)		
STRE	$C_{14}C_{11}$	f1028(12)	f1020(10)	f984(17)		
STRE	$C_{38}C_{35}$	f1086(21)	f899(11)			
BEND	$C_8N_2C_1$	f986(16)	f726(13)	f540(11)		
BEND	$H_3N_2C_1$	f1457(25)	f1314(15)	f540(13)		
BEND	$H_6C_5N_4$	f1247(13)	f1239(17)	f1203(21)	f1105(15)	
BEND	H ₇ C ₅ H ₆	f1500(84)				
BEND	$H_9C_8N_2$	f1203(47)				
BEND	$H_{10}C_8H_9$	f1526(75)				
BEND	$H_{12}C_{11}C_{14}$	f1309(13)	f1122(13)			
BEND	$H_{13}C_{11}H_{12}$	f1482(51)				
BEND	$H_{15}C_{14}C_{17}$	f1334(15)	f1326(10)			
BEND	$H_{16}C_{14}H_{15}$	f1511(13)	f1504(21)	f1495(14)	f1482(13)	
BEND	$H_{18}C_{17}H_{19}$	f1516(13)	f1489(25)	f1486(13)		
BEND	$H_{19}C_{17}C_{20}$	f1332(10)				
BEND	$H_{21}C_{20}C_{23}$	f1342(19)				
BEND	$H_{22}C_{20}H_{21}$	f1516(17)	f1495(17)	f1489(11)	f1486(10)	f1482(14)
BEND	$H_{24}C_{23}C_{26}$	f1343(16)	f1326(14)			

BEND	$H_{25}C_{23}H_{24}$	f1516(18)	f1504(20)	f1488(28)	f1484(13)	
BEND	$H_{27}C_{26}C_{29}$	f1342(14)	f1326(10)			
BEND	$H_{28}C_{26}H_{27}$	f1516(17)	f1495(18)	f1486(10)	f1484(24)	
BEND	$H_{31}C_{29}H_{30}$	f1516(12)	f1511(12)	f1489(15)	f1486(16)	f1485(13)
BEND	H ₃₃ C ₃₂ C ₃₅	f1343(11)	f1334(18)			
BEND	H ₃₄ C ₃₂ H ₃₃	f1511(10)	f1504(17)	f1485(11)	f1484(15)	
BEND	H ₃₆ C ₃₅ C ₃₈	f1376(13)	f1078(11)			
BEND	H ₃₇ C ₃₅ H ₃₆	f1504(11)	f1495(17)	f1488(18)	f1484(24)	
BEND	$H_{39}C_{38}C_{41}$	f1338(11)	f1320(16)			
BEND	$H_{40}C_{38}H_{39}$	f1500(20)	f1486(15)	f1485(20)		
BEND	$H_{42}C_{41}C_{44}$	f1332(17)				
BEND	$H_{43}C_{41}H_{42}$	f1512(17)	f1500(14)	f1485(32)		
BEND	$H_{45}C_{44}C_{47}$	f1332(11)	f1320(17)			
BEND	$H_{46}C_{44}H_{45}$	f1512(23)	f1511(14)	f1490(33)	f1488(11)	
BEND	$H_{48}C_{47}H_{50}$	f1500(11)	f1500(34)	f1412(30)		
BEND	$H_{49}C_{47}H_{48}$	f1500(41)	f1412(30)			
BEND	$H_{50}C_{47}H_{49}$	f1512(11)	f1500(29)	f1412(26)		
BEND	$N_4C_1N_2$	f921(43)				
BEND	$C_{11}C_1N_4$	f377(25)	f348(18)	f335(22)		
BEND	$C_5N_4C_1$	f921(20)	f872(10)			
BEND	$C_{17}C_{14}C_{11}$	f348(12)				
BEND	$C_{20}C_{17}C_{14}$	f451(21)				
BEND	$C_{23}C_{20}C_{17}$	f480(22)	f348(11)			
BEND	$C_{26}C_{23}C_{20}$	f480(11)	f451(15)			
BEND	$C_{29}C_{26}C_{23}$	f528(13)	f84(14)			
BEND	$C_{32}C_{29}C_{26}$	f480(19)	f348(13)	f152(10)		
BEND	$C_{35}C_{32}C_{29}$	f528(15)				
BEND	$C_{41}C_{38}C_{35}$	f528(10)	f451(10)	f400(12)		
BEND	$C_{44}C_{41}C_{38}$	f400(11)	f208(23)			
BEND	$C_{47}C_{44}C_{41}$	f400(48)	f208(16)			
BEND	$C_{14}C_{11}C_{1}$	f84(18)				
BEND	$C_{38}C_{35}C_{32}$	f528(17)	f233(13)			
TORS	$H_3N_2C_1C_{11}$	f540(58)				
TORS	$H_6C_5N_4C_1$	f1105(14)	f189(10)			
TORS	$H_7C_5N_4C_1$	f1351(10)	f1338(11)			
TORS	$H_9C_8N_2C_1$	f1457(12)	f1314(14)	f1105(13)	f189(10)	
TORS	$H_{10}C_8N_2C_1$	f1457(13)	f1314(27)			
TORS	$H_{15}C_{14}C_{17}C_{20}$	f1390(10)				
TORS	$H_{16}C_{14}C_{17}C_{20}$	f1390(13)				
TORS	$H_{19}C_{17}C_{20}C_{23}$	f733(11)				
TORS	$H_{21}C_{20}C_{23}C_{26}$	f733(17)				
TORS	$H_{24}C_{23}C_{26}C_{29}$	f733(16)				
TORS	$H_{27}C_{26}C_{29}C_{32}$	f1403(11)				
TORS	$H_{28}C_{26}C_{29}C_{32}$	f1403(14)				
TORS	H ₃₃ C ₃₂ C ₃₅ C ₃₈	f729(13)				
TORS	$H_{34}C_{32}C_{35}C_{38}$	f1405(11)				
TORS	H ₃₇ C ₃₅ C ₃₈ C ₄₁	t1405(10)	27 00//			
TORS	$H_{39}C_{38}C_{41}C_{44}$	f1376(10)	f788(11)			
TORS	$H_{40}C_{38}C_{41}C_{44}$	t1376(18)				
TORS	$H_{42}C_{41}C_{44}C_{47}$	f/29(11)				
TORS	$H_{46}C_{44}C_{41}C_{38}$	11376(18)	(T00(10)		(222)(12)	
TORS	$H_{48}C_{47}C_{44}C_{41}$	11500(15)	1/88(10)	1248(25)	1233(12)	
TORS	$H_{49}C_{47}C_{44}C_{41}$	11143(10)	1248(11)			

Çizelge 4.5 (1) No'lu bileşiğin teorik PED analizi	(devamı)

TORS	$H_{50}C_{47}C_{44}C_{41}$	f903(11)	f248(11)			
TORS	$C_8N_2C_1N_4$	f189(23)	f164(15)			
TORS	$C_5N_4C_1N_2$	f1105(12)	f279(13)	f189(15)		
TORS	$C_{17}C_{14}C_{11}C_{1}$	f110(10)	f66(22)	f48(10)	f27(14)	f18(12)
TORS	$C_{20}C_{17}C_{14}C_{11}$	f126(22)	f82(12)	f12(17)		
TORS	$C_{23}C_{20}C_{17}C_{14}$	f155(20)	f27(10)	f18(17)		
TORS	$C_{26}C_{23}C_{20}C_{17}$	f167(13)	f155(13)	f66(13)	f12(18)	
TORS	$C_{29}C_{26}C_{23}C_{20}$	f167(13)	f155(13)	f82(20)	f18(16)	
TORS	$C_{32}C_{29}C_{26}C_{23}$	f155(12)	f110(15)	f34(18)	f12(13)	
TORS	$C_{35}C_{32}C_{29}C_{26}$	f126(20)	f48(12)	f18(11)		
TORS	$C_{41}C_{38}C_{35}C_{35}$	f82(14)	f48(20)			
TORS	$C_{44}C_{41}C_{38}C_{35}$	f84(19)	f60(38)			
TORS	$C_{47}C_{44}C_{41}C_{38}$	f119(35)	f110(11)			
TORS	$C_{14}C_{11}C_1N_2$	f34(23)	f12(26)			
TORS	$C_{38}C_{35}C_{32}C_{29}$	f208(10)	f66(30)	f34(16)		
OUT	$C_{11}N_2N_4C_1$	f769(10)	f650(15)	f84(10)		

Çizelge 4.5 (1) No'lu bileşiğin teorik PED analizi (devamı)

Şekil 4.16 (1) No'lu bileşiğin teorik ¹H-NMR spektrumu (gaz fazı)

	<u> </u>	e	
Atom	Teorik kimy	Deneysel	
	(ppm)		kimvasal kavma
	(FF)		(nnm)
	CHCl ₂ fazt	Gaz fazi	CHCla fazi
	CITCI3 IdZI	Oaz Iazi	CHCI3 IdZI
6	3.79	3.79	3.40
7	3.70	3.69	3.40
3	3.63	3.86	6.19
9	3.35	3.39	3.40
10	3.15	3.21	3.40
13	2.12	2.03	1.63
12	1.95	2.08	1.63
37,39,42,16,34	1.44	1.45	1.28
15,22,28,46,27,25,40,19,18,24,21,45,31,36,30	1.20	1.20	1.28
48	1.08	1.08	0.9
43,33	0.92	0.93	1.28
50,49	0.79	0.79	0.9

Çizelge 4.6 (1) No'lu bileşiğinin ¹H-NMR kimyasal kayma değerleri

Şekil 4.17 (1) No'lu bileşiğin deneysel ve teorik değerleri

Atom	Yük	Atom	Yük	Atom	Yük	Atom	Yük
No		No		No		No	
C ₁	0.44801	C ₁₄	-0.37078	H ₂₇	0.18792	H ₄₀	0.18795
N ₂	-0.66544	H ₁₅	0.20057	H ₂₈	0.18865	C ₄₁	-0.38446
H ₃	0.37671	H ₁₆	0.19362	C ₂₉	-0.37581	H ₄₂	0.18929
N_4	-0.52523	C ₁₇	-0.37729	H ₃₀	0.18807	H ₄₃	0.18703
C ₅	-0.21511	H ₁₈	0.18677	H ₃₁	0.18788	C44	-0.38232
H ₆	0.19512	H19	0.19091	C ₃₂	-0.38150	H45	0.18791
H ₇	0.18733	C ₂₀	-0.37588	H ₃₃	0.18778	H ₄₆	0.18714
C ₈	-0.19764	H ₂₁	0.18825	H ₃₄	0.18966	C ₄₇	-0.57255
H ₉	0.19351	H ₂₂	0.19034	C ₃₅	-0.37579	H ₄₈	0.19919
H ₁₀	0.17305	C ₂₃	-0.37596	H ₃₆	0.18766	H49	0.19259
C ₁₁	-0.42431	H ₂₄	0.18887	H ₃₇	0.19258	H ₅₀	0.19262
H ₁₂	0.19863	H ₂₅	0.18767	C ₃₈	-0.37666		
H ₁₃	0.22686	C ₂₆	-0.37585	H ₃₉	0.19247		

Çizelge 4.7 (1) No'lu bileşiğin Mulliken yük çizelgesi

Çizelge 4.8 (1) No'lu bileşiğin NBO analizi

Elektron verici	Elektron alıcı NBO(j)	E(2) kcal/mol	Ej	Ei
BD (2) C ₁ - N ₄	BD*(1) C ₅ - H ₆	3.01	0.72	0.042
BD (2) C ₁ - N ₄	BD*(1) C ₅ - H ₇	4.29	0.71	0.049
BD (1) C ₁ - C ₁₁	BD*(1) N ₄ - C ₅	3.41	1.01	0.053
BD (1) N ₂ - H ₃	BD*(1) C ₁ - N ₄	2.52	1.27	0.051
BD (1) N ₂ - C ₈	BD*(1) C ₁ - C ₁₁	4.01	1.14	0.061
BD (1) N ₄ - C ₅	BD*(1) C ₁ - C ₁₁	8.64	1.09	0.087
BD (1) N ₄ - C ₅	BD*(1) C ₈ - H ₉	0.83	1.06	0.026
BD (1) C ₅ - C ₈	BD*(1) N ₂ - H ₃	2.91	1.01	0.048
BD (1) C ₁₁ - H ₁₂	$BD^{*}(1) C_1 - N_4$	2.50	1.13	0.047
BD (1) C ₁₁ - H ₁₂	BD*(2) C ₁ - N ₄	4.30	0.55	0.045
BD (1) C ₁₁ - H ₁₂	BD*(1) C ₁₄ - H ₁₅	2.64	0.90	0.044
BD (1) C ₁₁ - H ₁₃	$BD^{*}(1) C_1 - N_2$	5.94	0.92	0.067
BD (1) C ₁₁ - H ₁₃	BD*(1) C ₁₄ - H ₁₆	2.75	0.89	0.044
BD (1) C ₁₁ - C ₁₄	BD*(2) C ₁ - N ₄	2.61	0.65	0.038
BD (1) C ₁₄ - H ₁₅	BD*(1) C ₁₁ - H ₁₂	2.82	0.86	0.044
BD (1) C ₁₄ - H ₁₅	BD*(1) C ₁₇ - H ₁₈	2.88	0.88	0.045
BD (1) C ₁₄ - H ₁₆	BD*(1) C ₁₁ - H ₁₃	2.63	0.89	0.043
BD (1) C ₁₄ - H ₁₆	BD*(1) C ₁₇ - H ₁₉	2.83	0.88	0.045
BD (1) C ₁₇ - H ₁₈	BD*(1) C ₁₄ - H ₁₅	2.83	0.89	0.045
BD (1) C ₁₇ - H ₁₈	BD*(1) C ₂₀ - H ₂₂	2.86	0.88	0.045
BD (1) C ₁₇ - H ₁₉	BD*(1) C ₁₄ - H ₁₆	2.87	0.88	0.045

BD (1) C ₁₇ - H ₁₉	BD*(1) C ₂₀ - H ₂₁	2.88	0.88	0.045
BD (1) C ₂₀ - H ₂₁	BD*(1) C ₁₇ - H ₁₉	2.89	0.88	0.045
BD (1) C ₂₀ - H ₂₁	BD*(1) C ₂₃ - H ₂₄	2.88	0.88	0.045
BD (1) C ₂₀ - H ₂₂	BD*(1) C ₁₇ - H ₁₈	2.92	0.88	0.045
BD (1) C ₂₀ - H ₂₂	BD*(1) C ₂₃ - H ₂₅	2.89	0.88	0.045
BD (1) C ₂₃ - H ₂₄	BD*(1) C ₂₀ - H ₂₁	2.91	0.88	0.045
BD (1) C ₂₃ - H ₂₄	BD*(1) C ₂₆ - H ₂₇	2.90	0.88	0.045
BD (1) C ₂₃ - H ₂₅	BD*(1) C ₂₀ - H ₂₂	2.89	0.88	0.045
BD (1) C ₂₃ - H ₂₅	BD*(1) C ₂₆ - H ₂₈	2.89	0.88	0.045
BD (1) C ₂₆ - H ₂₇	BD*(1) C ₂₃ - H ₂₄	2.89	0.88	0.045
BD (1) C ₂₆ - H ₂₇	BD*(1) C ₂₉ - H ₃₁	2.89	0.88	0.045
BD (1) C ₂₆ - H ₂₈	BD*(1) C ₂₃ - H ₂₅	2.91	0.88	0.045
BD (1) C ₂₆ - H ₂₈	BD*(1) C ₂₉ - H ₃₀	2.89	0.88	0.045
BD (1) C ₂₉ - H ₃₀	BD*(1) C ₂₆ - H ₂₈	2.90	0.88	0.045
BD (1) C ₂₉ - H ₃₀	BD*(1) C ₃₂ - H ₃₃	2.90	0.88	0.045
BD (1) C ₂₉ - H ₃₁	BD*(1) C ₂₆ - H ₂₇	2.90	0.88	0.045
BD (1) C ₂₉ - H ₃₁	BD*(1) C ₃₂ - H ₃₄	2.86	0.88	0.045
BD (1) C ₃₂ - H ₃₃	BD*(1) C ₂₉ - H ₃₀	2.91	0.88	0.045
BD (1) C ₃₂ - H ₃₃	BD*(1) C ₃₅ - H ₃₆	2.92	0.88	0.045
BD (1) C ₃₂ - H ₃₄	BD*(1) C ₂₉ - H ₃₁	2.90	0.88	0.045
BD (1) C ₃₂ - H ₃₄	BD*(1) C ₃₅ - H ₃₇	2.72	0.88	0.044
BD (1) C ₃₅ - H ₃₆	BD*(1) C ₃₂ - H ₃₃	2.90	0.88	0.045
BD (1) C ₃₅ - H ₃₆	BD*(1) C ₃₈ - H ₄₀	2.88	0.88	0.045
BD (1) C ₃₅ - H ₃₇	BD*(1) C ₃₂ - H ₃₄	3.03	0.88	0.046
BD (1) C ₃₅ - H ₃₇	BD*(1) C ₃₈ - C ₄₁	3.28	0.88	0.048
BD (1) C ₃₈ - H ₃₉	BD*(1) C ₃₂ - C ₃₅	3.28	0.88	0.048
BD (1) C ₃₈ - H ₃₉	BD*(1) C ₄₁ - H ₄₂	3.04	0.88	0.046
BD (1) C ₃₈ - H ₄₀	BD*(1) C ₃₅ - H ₃₆	2.88	0.88	0.045
BD (1) C ₃₈ - H ₄₀	BD*(1) C ₄₁ - H ₄₃	2.90	0.88	0.045
BD (1) C ₄₁ - H ₄₂	BD*(1) C ₃₈ - H ₃₉	2.71	0.88	0.044
BD (1) C ₄₁ - H ₄₂	BD*(1) C ₄₄ - H ₄₆	2.81	0.88	0.044
BD (1) C ₄₁ - H ₄₃	BD*(1) C ₃₈ - H ₄₀	2.91	0.88	0.045
BD (1) C ₄₁ - H ₄₃	BD*(1) C ₄₄ - H ₄₅	2.81	0.88	0.044
BD (1) C ₄₄ - H ₄₅	BD*(1) C ₄₁ - H ₄₃	2.94	0.88	0.045
BD (1) C ₄₄ - H ₄₅	BD*(1) C ₄₇ - H ₄₉	2.86	0.88	0.045
BD (1) C ₄₄ - H ₄₆	BD*(1) C ₄₁ - H ₄₂	2.90	0.88	0.045
BD (1) C ₄₄ - H ₄₆	BD*(1) C ₄₇ - H ₅₀	2.86	0.88	0.045
BD (1) C ₄₇ - H ₄₈	BD*(1) C ₄₁ - C ₄₄	2.84	0.90	0.045
BD (1) C ₄₇ - H ₄₉	BD*(1) C ₄₄ - H ₄₅	2.68	0.89	0.044
BD (1) C ₄₇ - H ₅₀	BD*(1) C ₄₄ - H ₄₆	2.68	0.89	0.044

Çizelge 4.8 (1) No'lu bileşiğin NBO analizi (devamı)

CR (1) N ₄	$RY^{*}(1) C_{1}$	3.99	15.01	0.219
LP (1) N ₂	BD*(2) C ₁ - N ₄	30.87	0.34	0.092
LP (1) N ₂	$BD^{*}(1) C_{8} - H_{9}$	4.01	0.69	0.049
LP (1) N ₂	$BD^{*}(1) C_{8} - H_{10}$	4.93	0.67	0.054
LP (1) N ₄	RY*(1) C_1	7.56	1.28	0.089
LP (1) N ₄	BD*(1) C ₁ - N ₂	11.37	0.79	0.085
LP (1) N ₄	$BD^{*}(1) C_{5} - C_{8}$	4.06	0.71	0.04

Çizelge 4.8 (1) No'lu bileşiğin NBO analizi (devamı)

ELUMO= -0,11211 eV

ELUMO+1=0,17088 eV

Е_{НОМО}= -6.11195 eV

E_(HOMO-1) =-7.13482 eV

Şekil 4.18 (1) No'lu bileşiğin HOMO-LUMO enerji düzeyleri ve enerji hesabı

Şekil 4.19 (1) No'lu bileşiğin teorik DOS spektrumu

Şekil 4.20 (1) No'lu bileşiğin MEP haritası

	номо	LUMO	HOMO-1	LUMO ⁺¹	HOMO- LUMO	HOMO ⁻¹ - LUMO ⁺¹	elektron egatiflik (X)	Sertlik	Kimyasa l potansiy el (Pi)	Elektrofi liklik endeksi	Yumuşaklık (S)	Elektronik yük (ΔN _{max})
Toluen	-0,22683	-0,00033	-0,2677	0,00797	-0,2265	-0,27567	0,11358	0,11325	-0,11358	0,113911	8,830022075	1,002913907
Karbontetr aklorür	-0,22667	-0,00054	-0,26733	0,00789	-0,22613	-0,27522	0,113605	0,113065	-0,11361	0,114148	8,844469995	1,004776014
Asetonitril	-0,23024	0,00253	-0,27528	0,00901	-0,23277	-0,28429	0,113855	0,116385	-0,11386	0,11138	8,592172531	0,982619223
diklormeta n	-0,22928	0,00201	-0,2732	0,0088	-0,23129	-0,282	0,113635	0,115645	-0,11364	0,11166	8,647152925	0,983975747
Kloroform	-0,22833	0,00127	-0,2711	0,00854	-0,2296	-0,27964	0,11353	0,1148	-0,11353	0,112274	8,710801394	0,988937282
THF	-0,22905	0,00185	-0,27269	0,00875	-0,2309	-0,28144	0,1136	0,11545	-0,1136	0,11178	8,661758337	0,978261803
DMSO	-0,23032	0,00256	-0,27546	0,00902	-0,23288	-0,28448	0,11388	0,11644	-0,11388	0,111376	8,58811405	0,978014428
Metanol	-0,2302	0,00251	-0,2752	0,009	-0,23271	-0,2842	0,113845	0,116355	-0,11385	0,111389	8,594387865	0,978428086
Etanol	-0,23009	0,00246	-0,27495	0,00898	-0,23255	-0,28393	0,113815	0,116275	-0,11382	0,111407	8,600301011	0,97884326
Gaz fazı	-0,22461	-0,00412	-0,2622	0,00628	-0,22049	-0,26848	0,114365	0,110245	-0,11437	0,118639	9,070706154	1,037371309

Çizelge 4.9 (1) No'lu bileşiğin hesaplanan moleküler parametreleri

Sıcaklık (Kelvin)	H (KCal/Mol)	CV(Cal/Mol- Kelvin)	S (Cal/Mol- Kelvin)
100	292,383	38,784	105,796
200	297,182	57,119	139,717
298,15	303,843	79,621	167,313
400	313,307	106,252	195,011
500	325,176	130,584	221,837
600	339,306	151,442	247,905
700	355,355	169,028	272,915
800	373,023	183,925	296,75
900	392,067	196,636	319,401
1000	412,29	207,54	340,907

Çizelge 4.10 (1) No'lu bileşik için hesaplanmış termodinamik parametreler

$H^0m = 288,3876 + 0,024496 T + 1,0x 10^{-4} T^2,$	(R ² =0,9997)
$S = 76,35876 + 0,321244T - 5,7 \times 10^{-5} T^2,$	(R ² =0,9997)
$CV = 5.599709 + 0.292915 T - 8.9 x 10^{-5} T^{2}$.	$(R^2 = 0.9979)$

Şekil 4.22 (1) No'lu.Bileşiğe ait teorik UV spektrumları

λ (nm)	E (eV)	MOs Katkısı	Çözücü
Teorik			
235	42406	H->L (%94)	
		H->L+2 (%3)	
	46864	H->L+2(%60)	_
		H->L+3($\%11$)	
		H->L+4 (%12)	
213		H>L (%3)	
		H -> L + 1(% 2)	
		H->L+ $6(\%2)$	Toluon
		H->L+7(%5)	Toluell
	48161	H->L+3(%14)	_
		H->L+5(%29)	
		H->L+6 (%21)	
207		H>L+7 (%11)	
		H -> L + 1(%4)	
		H->L+8(%7)	
		H->L+11(%4)	
236	42326	H->L (%94)	
		H->L+2 (%3)	
	46830	$H \rightarrow L + 2(\% 60)$	
		H -> L + 3(% 10)	
		H->L+4 (%13)	
213		H>L (%2)	Karbontetraklorür
		$H \rightarrow L + 1(\% 2)$	
		$H \rightarrow L + 6(\% 2)$	
		H->L+7(%5)	_
	48123	H->L+3(%14)	
		H->L+5(%28)	

Çizelge 4.11 (1) No'lu Bileşiğe ait maksimum absorbans değerleri

		H->L+6 (%22)	
207		H>L+7 (%10)	
		H->L+1(%4)	
		H -> L + 4(%6)	
		$H \rightarrow L + 8(\%7)$	
		H > L + 11(%8)	
227	13885	$\frac{\Pi > L + \Pi (000)}{U > L (000)}$	
221	45005	II > L (7009)	
	47501	$H \to L + 2(\% 7)$	_
210	47581	H -> L + 2(% / /)	
210		H>L (%6)	
		$H \rightarrow L + 3(\%5)$	
		H->L+7(%4)	– Asetonitril
	48924	H->L+4(%17)	Asetomum
		H->L+5(%29)	
204		H>L+7 (%33)	
		H->L+1(%3)	
		$H \rightarrow L + 3(\%8)$	
		H > L + 11(%4)	
220	13527	$\frac{H > L + H(0,0)}{H > L (0,0)}$	Diklormetan
229	45527	H > L + 2 (% 6)	DIKIOIIIICtali
	47410	$\frac{\Pi - 2L + 2(700)}{\Pi - 2(700)}$	_
210	47410	$\Pi - 2L + 2(\% / 3)$	
210		H>L(%5)	
		H ->L +3(%9)	
		H ->L + /(%5)	_
	48726	$H \rightarrow L + 4(\% 14)$	
		H->L+ $5(\%31)$	
205		H>L+7 (%32)	
		$H \rightarrow L + 1(\%3)$	
		H->L+3(%9)	
		H->L +8(%4)	
		$H \rightarrow L + 11(\%4)$	
231	43129	H->L (%92)	
		$H \rightarrow L + 2$ (%4)	
	47235	$H \rightarrow I + 2(\%68)$	_
	17233	H > L + 2(7000) H > L - (%12)	
211		H > I + 3(0/4)	
211		H > L + J(0/2)	
		$H \to L + 4(\% 5)$	
	49522	$H \to L + /(\%0)$	
	48523	H -> L + 3(% 11)	Klorolorm
202		$H \rightarrow L + 4(\% 10)$	
203		$H \rightarrow L + 5(\% 31)$	
		H>L+7 (%25)	
		$H \rightarrow L + 1(\%3)$	
		H -> L + 6(% 6)	
		H->L+ $8(\%6)$	
		H->L+11(%4)	
230	43438	H->L (%91)	
		H->L+2 (%5)	
	47382	H->L+2(%72)	_
211		$H \rightarrow L + 3(\% 10)$	
		H -> L(%5)	THF
		H > L + 7(%5)	
	18687	$H_{1} = 1 + 1 (0.5)$	_
	40002	H > I + 5(0/21)	
205		$\Pi - > L + \Im(\% \Im I)$	
205		H>L+/ (%31)	

Çizelge 4.11 (1) No'lu Bileşiğe ait maksimum absorbans değerleri (devamı)

		-	. ,
		H->L+1(%3)	
		H->L+6(%9)	
		H -> L + 8(% 4)	
		H->L+11(%4)	
227	43901	H->L (%88)	
		H->L+2 (%7)	
	47550	H->L+2(%78)	
210		H>L (%6)	
		H->L+ $3(\%5)$	
		H->L+7(%4)	
	48930	H->L+4(%17)	DWISO
204		H->L+5(%29)	
		H>L+7 (%34)	
		H -> L + 1(% 2)	
		H->L+ $3(\%7)$	
		H->L+11(%4)	
227	43877	H->L (%89)	
		H->L+2 (%7)	
	47585	H->L+2(%77)	
210		H>L (%6)	
		H->L+ $3(\%5)$	
		H->L+7(%4)	- Metanol
	48920	H->L+4(%17)	- Metallol
204		H->L+5(%29)	
		H>L+7 (%33)	
		H -> L + 1(% 3)	
		H -> L + 8(% 8)	
		H->L+11(%4)	
228	43832	H->L (%89)	
		H->L+2 (%7)	
	47553	H->L+2(%77)	
		H>L (%6)	
210		H->L+ $3(\%5)$	
		H->L+7(%4)	
	48893	H->L+4(%16)	Etanol
		H->L+5(%29)	
		H>L+7 (%34)	
204		H -> L + 1(%3)	
		H -> L + 3(% 8)	
		H -> L + 8(% 2)	
		H->L+11(%4)	

Çizelge 4.11 (1) No'lu Bileşiğe ait maksimum absorbans değerleri (devamı)

Şekil 4.23 (2) No'lu bileşiğin Gaussian 09'da optimize edilmiş hali

Şekil 4.24 (2) No'lu bileşiğin teorik FT-IR spektrum

/ / /	, 0					
N_2H_3	f3598(100)					
C5H6	f3085(32)	f3075(62)				
C_5H_7	f3013(92)					
C ₈ H ₉	f3085(58)	f3075(37)				
C_8H_{10}	f2989(94)					
C11H12	f3097(86)					
C11H13	f3097(10)	f3026(11)	f3021(43)	f3018(25)		
C14H15	f3002(16)	f2999(27)	f2997(18)			
$C_{14}H_{16}$	f3049(11)	f3043(12)	f3037(12)	f3031(10)	f3018(12)	
C17H18	f3026(13)	f3014(12)	f2997(20)			
C17H19	f3005(17)	f3002(10)	f2997(21)			
C20H21	f3014(16)	f3011(16)	f2993(10)			
C20H22	f3005(11)	f2995(13)	f2993(14)			
C23H24	f3008(12)					
C23H25	f3011(20)					
C26H27	f3009(12)	f2992(15)				
C26H28	f3006(11)	f2992(16				
C ₂₉ H ₃₀	f3010(12)	f2995(13)	f2991(11)			
C ₂₉ H ₃₁	f3006(14)	f2995(14)	f2991(12)			
	$\begin{array}{c} N_2H_3 \\ C_5H_6 \\ C_5H_7 \\ C_8H_9 \\ C_8H_{10} \\ C_{11}H_{12} \\ C_{11}H_{13} \\ C_{14}H_{15} \\ C_{14}H_{16} \\ C_{17}H_{18} \\ C_{20}H_{21} \\ C_{20}H_{21} \\ C_{23}H_{24} \\ C_{23}H_{25} \\ C_{26}H_{27} \\ C_{26}H_{28} \\ C_{29}H_{30} \\ C_{29}H_{31} \\ \end{array}$	$\begin{array}{c cccc} N_2H_3 & f3598(100) \\ \hline C_3H_6 & f3085(32) \\ \hline C_5H_7 & f3013(92) \\ \hline C_8H_9 & f3085(58) \\ \hline C_8H_{10} & f2989(94) \\ \hline C_{11}H_{12} & f3097(86) \\ \hline C_{11}H_{13} & f3097(10) \\ \hline C_{14}H_{15} & f3002(16) \\ \hline C_{14}H_{16} & f3049(11) \\ \hline C_{17}H_{18} & f3026(13) \\ \hline C_{20}H_{21} & f3005(17) \\ \hline C_{20}H_{21} & f3005(11) \\ \hline C_{23}H_{24} & f3008(12) \\ \hline C_{26}H_{27} & f3009(12) \\ \hline C_{26}H_{28} & f3006(11) \\ \hline C_{29}H_{30} & f3010(12) \\ \hline C_{29}H_{31} & f3006(14) \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Cizelge 4.12 (2) No'lu bileşiğin teorik PED analizi

STRE	C32H33	f3006(12)	f2994(10)			
STRE	C35H36	f2994(10)	f2990(16)			
STRE	C35H37	f2994(10)	f2990(17)			
STRE	C ₃₈ H ₃₉	f3010(12)	f2995(11)	f2990(15)		
STRE	C38H40	f3006(11)	f2995(11)	f2990(15)		
STRE	C ₄₁ H ₄₂	f3006(12)	f2992(11)			
STRE	C ₄₁ H ₄₃	f3006(12)	f2992(12)			
STRE	C44H46	f3006(11)				
STRE	C47H48	f3009(11)	f2991(11)	f2990(11)		
STRE	C47H49	f3008(11)	f2991(10)	f2990(11)		
STRE	C50H51	f3009(15)	f3005(10)			
STRE	C50H52	f3010(10)	f3008(12)	f3005(10)		
STRE	C53H54	f3082(73)	f3018(26)			
STRE	C53H55	f3082(11)	f3078(46)	f3018(36)		
STRE	C53H56	$f_{3082(15)}$	f3078(42)	f3018(35)		
STRE	N4C1	f1691(76)				
STRE	N ₂ C ₁	f1459(15)				
STRE	$C_{11}C_1$	f724(10)	f646(11)			
STRE	N ₂ C ₂	$f_{1047(38)}$	f1042(20)			
STRE	N4C5	f995(17)	f985(19)			
STRE	C17C14	f1066(13)	f1056(20)	f1017(15)		
STRE	$C_{17}C_{14}$	$f_{1061(17)}$	11050(20)	1101/(10)		
STRE	$C_{20}C_{20}$	f1067(12)	f1064(12)			
STRE	$C_{23}C_{20}$	$f_{1067(12)}$	$f_{1064(10)}$			
STRE	$C_{20}C_{25}$	f1067(10)	f1066(14)	f978(10)		
STRE	$C_{2}C_{20}$	f1066(16)	f983(12)	1970(10)		
STRE	C35C32	f1066(16)	f1061(10)	f978(13)		
STRE	C38C35	f1069(11)	f1067(12)	f1064(10)	f978(11)	
STRE	C ₄₁ C ₃₈	f1067(16)	f1064(12)	f1017(19		
STRE	C44C41	f1064(10)	f978(11)			
STRE	C47C44	f1069(21)				
STRE	C50C47	f1069(20)	f896(28)			
STRE	C53C50	f1056(15)	f1024(11)	f896(17)		
STRE	C14C11	f1061(11)	f1047(10)	f1024(16)	f971(13)	
BEND	$C_8N_2C_1$	f985(18)	f871(14)	f541(13)		
BEND	$H_3N_2C_1$	f1459(29)	f1315(12)	f541(12)		
BEND	H ₆ C ₅ N ₄	f1245(15)	f1235(16)	f1202(18)	f1105(14)	
BEND	H7C5H6	f1500(82)				
BEND	H9C8H10	f1527(79)				
BEND	$H_{10}C_8N_2$	f1202(53)	f1105(10)			
BEND	H ₁₃ C ₁₁ H ₁₂	f1477(68)				
BEND	$H_{15}C_{14}C_{17}$	f1332(12)				
BEND	$H_{16}C_{14}H_{15}$	f1503(11)	f1498(11)	f1494(10)	f1477(15)	
BEND	$H_{18}C_{17}C_{20}$	f1336(12)				
BEND	H19C17H18	f1512(11)	f1490(10)	f1488(19)	f1486(20)	
BEND	$H_{21}C_{20}C_{23}$	f1336(15)				
BEND	$H_{22}C_{20}H_{21}$	f1515(11)	f1494(10)	f1490(18)	f1486(13)	
BEND	H24C23C26	f1342(15)				
BEND	H25C23H24	f1515(11)	f1503(10)	f1490(15)	f1486(17)	
BEND	H27C26C29	f1341(13)				
BEND	H ₂₈ C ₂₆ H ₂₇	f1518(10)	f1490(17)	f1486(13)	f1484(20)	
BEND	H30C29C32	f1341(10)				
BEND	H ₃₁ C ₂₉ H ₃₀	f1518(12)	f1490(10)	f1486(12)	f1484(18)	
BEND	H ₃₃ C ₃₂ C ₃₅	f1342(12)	f1332(13)			
BEND	H34C32H33	f1518(12)	f1512(10)	f1490(24)	f1484(18)	
BEND	H ₃₆ C ₃₅ C ₃₈	f1341(16)	f1324(10)			
BEND	H37C35H36	f1518(12)	f1512(10)	f1488(10)	f1484(25)	
BEND	H40C38H39	f1518(10)	f1498(10)	f1490(19)	f1484(20)	
BEND	H42C41C44	f1338(13)				

Çizelge 4.12 (2) No'lu bileşiğin teorik PED analizi (devamı)

Çizelge 4.12 (2)	No'lu bileşiğin teori	k PED analizi ((devamı)
------------------	-----------------------	-----------------	----------

DEND	иаи	(1509(10)	(1404(10)	(140)(10)	(1404(17))		
BEND	H43C4 1H42	11508(10)	11494(12)	11480(10)	11484(17)		
BEND	H45C44C47	f1336(12)	f1329(12)				
BEND	$H_{46}C_{44}H_{45}$	f1515(11)	f1503(11)	f1488(11)	f1486(22)	f1484(12)	
BEND	$H_{48}C_{47}C_{50}$	f1332(10)					
BEND	H49C47H48	f1515(11)	f1488(18)	f1486(13)			
BEND	H ₅₁ C ₅₀ C ₅₃	f1323(13)					
BEND	H52C50H51	f1515(10)	f1512(14)	f1508(10)	f1494(12)	f1490(12)	f1486(14)
BEND	H54C52H56	f1501(39)	f1415(30)				
BEND	H55C52H54	$f_{1501(37)}$	f1415(31)				
DEND	Hs/CsoHss	$f_{150}(37)$	$f_{1502(12)}$	f1/08(12)	f1/15(25)		
DEND	N.C.N.	f(1) = f(1) =	$f_{724(1c)}$	11490(12)	11413(23)		
BEND	N4C1N2	1923(39)	1724(16)	(244(20))	(212(11)		
BEND	$C_{11}C_1N_4$	1398(10)	1361(17)	1344(28)	1313(11)		
BEND	$C_5N_4C_1$	f923(19)	f871(15)	f724(18)			
BEND	$C_{20}C_{17}C_{14}$	f461(13)	f43(10)				
BEND	$C_{23}C_{20}C_{17}$	f511(11)	f447(16)	f114(11)			
BEND	C26C23C20	f515(10)	f461(15)	f139(12)	f15(11)		
BEND	C ₂₉ C ₂₆ C ₂₃	f511(12)	f79(11)	f15(12)			
BEND	$C_{32}C_{29}C_{26}$	f511(16)	$f_{114(10)}$	$f_{15(13)}$			
BEND	$C_{25}C_{22}C_{20}$	f515(19)	f398(10)	$f_{139(12)}$	f15(11)		
BEND	$C_{33}C_{32}C_{23}$	f511(15)	1370(10)	1135(12)	115(11)		
DEND		$f_{1311(13)}$					
DEND	$C_{41}C_{38}C_{35}$	143(11)	64(1)(1)	(70(10)			
BEND	C44C41C38	1515(16)	1461(11)	1/9(10)			
BEND	$C_{47}C_{44}C_{41}$	1447(11)	f114(10)				
BEND	C53C50C47	f461(14)	f398(15)	f256(11)			
BEND	$C_{14}C_{11}C_{1}$	f79(14)	f43(10)				
TORS	$H_3N_2C_1C_{11}$	f1459(10)	f541(57)				
TORS	$H_6C_5N_4C_1$	f1105(10)	f871(10)				
TORS	$H_7C_5N_4C_1$	f1347(14)	f1333(10)				
TORS	H ₉ C ₈ N ₂ C ₁	f1459(10)	f1315(14)	f1245(11)	f871(10)		
TORS	$H_{10}C_8N_2C_1$	f1315(17)	()	- ()			
TORS	$H_{10}C_{11}C_{1}N_{2}$	f646(11)					
TORS	HazCarCarCar	f732(13)					
TODS	$\frac{112}{C_{26}C_{29}C_{32}}$	1732(13)			-		
TORS	H28C26C29C32	11404(11)					
TORS	H ₃₀ C ₂₉ C ₃₂ C ₃₅	1/32(15)					
TORS	H ₃₃ C ₃₂ C ₃₅ C ₃₈	f/32(11)					
TORS	H ₃₄ C ₃₂ C ₃₅ C ₃₈	f1404(10)					
TORS	$H_{40}C_{38}C_{41}C_{44}$	f1399(10)					
TORS	$H_{43}C_{41}C_{44}C_{47}$	f1399(11)					
TORS	H54C53C50C47	f1501(15)	f248(35)				
TORS	H55C53C50C47	f896(11)	f248(19)				
TORS	H56C53C50C47	f896(14)	f248(15)				
TORS	$C_8N_2C_1N_4$	f198(13)	f179(23)				
TORS	$C_5N_4C_1N_2$	f1105(12)	f313(11)	f198(12)			
TORS	$C_{17}C_{14}C_{11}C_{1}$	f88(17)	f57(17)	$f_{25(31)}$			
TORS	$\frac{C_{17}C_{14}C_{11}C_{14}}{C_{20}C_{17}C_{14}C_{11}}$	$f_{132(13)}$	$f_{101(18)}$	$f_{23}(31)$			
TORS		$f_{157(12)}$	f147(10)	$f_{25}(24)$			
TORS	$C_{23}C_{20}C_{17}C_{14}$	1137(13)	1147(10)	123(24)	(21/17)	(10)	
TORS	$C_{26}C_{23}C_{20}C_{17}$	1108(11)	1147(13)	170(15)	131(17)	112(10)	
TORS	$C_{29}C_{26}C_{23}C_{20}$	f1/1(14)	f157(11)	f88(19)	f25(10)	f12(10)	
TORS	$C_{32}C_{29}C_{26}C_{23}$	f168(19)	f101(10)	f12(17)			
TORS	C35C32C29C26	f171(18)	f132(16)	f57(19)	f12(11)		
TORS	C38C35C32C29	f168(20)	f88(10)	f25(10)	f12(16)		
TORS	C41C38C35C32	f171(15)	f101(17)	f57(11)			
TORS	C44C41C38C35	f168(11)	f147(20)	f57(17)	f25(12)		
TORS	C47C44C41C38	f157(19)	f70(20)	f46(15)			
TORS	$C_{50}C_{47}C_{44}C_{41}$	$f_{120(17)}$	f88(22)	f57(16)			
TORS	$C_{53}C_{50}C_{47}C_{44}$	$f_{157(10)}$	$f_{132(17)}$	$f_{101(20)}$	f70(15)		
TOPS	$C_{14}C_{11}C_{1}N_{2}$	$f_{112}^{(10)}$	$f_{46(25)}$	$f_{31(10)}$	110(15)		
		f646(26)	140(23)	131(19)			
001	C111N21N4C1	1040(20)					

Şekil 4.25 (2) No'lu bileşiğin teorik ¹H-NMR spektrumu (CHCl₃ fazı)

Şekil 4.26 (2) No'lu bileşiğin teorik ¹H-NMR spektrumu (gaz fazı)

Atom	Teorik kimy (ppm)	asal kayma	Deneysel kimyasal kayma
	CHCl _a fazi	Goz fozi	(ppm)
2			CHC13 1aZ1
5	3.90	3.30	0.20
6	3.82	3.83	3.42
7	3.69	3.69	3.42
9	3.41	3.33	3.42
10	3.12	3.00	3.42
12	2.21	2.33	1.63
13	2.04	1.94	1.63
15	1.33	1.18	1.30
51,52,18,19,16,21,25,40,39,46,43,42,45,27,36,3	1.18	1.18	1.30
4,24,37,30,22,33,28,31,48,49			
54	1.07	1.08	0.92
55,56	0.76	0.76	0.92

Çizelge 4.13 (2) No'lu bileşiğin ¹H-NMR kimyasal kayma hesaplamaları

Şekil 4.27 (2) No'lu bileşiğin deneysel ve teorik ¹H-NMR değerleri

Atom No	Yük	Atom No	Yük	Atom No	Yük	Atom No	Yük
C ₁	0.44802	H ₁₅	0.18029	C ₂₉	-0.28933	H ₄₃	0.18797
N_2	-0.66559	H ₁₆	0.19892	H ₃₀	0.18412	C44	-0.37700
H ₃	0.37815	C ₁₇	-0.37764	H ₃₁	0.18359	H45	0.18808
N_4	-0.52512	H ₁₈	0.19279	C ₃₂	-0.40108	H ₄₆	0.18799
C ₅	-0.21542	H ₁₉	0.18916	H ₃₃	0.18727	C ₄₇	-0.37897
H ₆	0.19525	C ₂₀	-0.37674	H ₃₄	0.18768	H ₄₈	0.18765
H ₇	0.18764	H ₂₁	0.18997	C ₃₅	-0.38155	H49	0.18770
C_8	-0.19736	H ₂₂	0.18715	H ₃₆	0.18789	C ₅₀	-0.38245
H9	0.19364	C ₂₃	-0.38174	H ₃₇	0.18762	H ₅₁	0.18750
H_{10}	0.17262	H ₂₄	0.18792	C ₃₈	-0.37658	H ₅₂	0.18757
C ₁₁	-0.42804	H ₂₅	0.18912	H ₃₉	0.18780	C ₅₃	-0.57251
H ₁₂	0.22715	C ₂₆	-0.40113	H ₄₀	0.18800	H ₅₄	0.19909
H ₁₃	0.21053	H ₂₇	0.18807	C ₄₁	-0.37642	H55	0.19270
C ₁₄	-0.37065	H ₂₈	0.18717	H ₄₂	0.18810	H ₅₆	0.19276

(Cizelge 4.14	(2) No'lu b	oileşiğin Mullik	en yük çizelgesi

Çizelge 4.15 (2) No'lu bileşiğin NBO analizi

Elektron verici	Elektron alıcı	E(2)	Ej	Ei
NBO(i)	NBO(j)	kcal/mol		
BD (2) C ₁ - N ₄	BD*(1) C ₅ - H ₆	2.94	0.71	0.041
BD (2) C ₁ - N ₄	BD*(1) C ₅ - H ₇	4.38	0.70	0.050
BD (1) C ₁ - C ₁₁	BD*(1) N ₄ - C ₅	3.39	1.01	0.052
BD (1) N ₂ - H ₃	BD*(1) C ₁ - N ₄	2.59	1.28	0.051
BD (1) N ₂ - C ₈	BD*(1) C ₁ - C ₁₁	4.05	1.14	0.061
BD (1) N ₄ - C ₅	BD*(1) C ₁ - C ₁₁	8.55	1.10	0.087
BD (1) C ₅ - C ₈	BD*(1) N ₂ - H ₃	2.92	1.02	0.049
BD (1) C ₁₁ - H ₁₂	BD*(1) C ₁ - N ₂	5.98	0.93	0.067
BD (1) C ₁₁ - H ₁₂	BD*(1) C ₁₄ - H ₁₅	2.91	0.88	0.045
BD (1) C ₁₁ - H ₁₃	BD*(1) C ₁ - N ₄	2.82	1.13	0.051
BD (1) C ₁₁ - H ₁₃	BD*(2) C ₁ - N ₄	3.66	0.55	0.042

BD (1) C ₁₁ - H ₁₃	BD*(1) C ₁₄ - H ₁₆	2.75	0.89	0.044
BD (1) C ₁₁ - C ₁₄	BD*(2) C ₁ - N ₄	2.97	0.65	0.041
BD (1) C ₁₄ - H ₁₅	BD*(1) C ₁₁ - H ₁₂	2.58	0.90	0.043
BD (1) C ₁₄ - H ₁₅	$BD^{*}(1) C_{17} - H_{18}$	2.79	0.89	0.045
BD (1) C ₁₄ - H ₁₆	$BD^{*}(1) C_{11} - H_{13}$	2.71	0.88	0.044
BD (1) C ₁₄ - H ₁₆	BD*(1) C ₁₇ - H ₁₉	2.82	0.88	0.045
BD (1) C ₁₇ - H ₁₈	$BD^{*}(1) C_{14} - H_{15}$	2.93	0.87	0.045
$BD(1)C_{17} - H_{18}$	BD*(1) C20- H22	2.89	0.88	0.045
$\frac{BD(1)C_{17}-H_{10}}{BD(1)C_{17}-H_{10}}$	$BD^{*}(1) C_{14} - H_{16}$	2.87	0.88	0.045
$\frac{BD(1)C_{17}-H_{19}}{BD(1)C_{17}-H_{10}}$	$BD^{*}(1) C_{14} H_{10}$	2.86	0.88	0.045
$\frac{BD(1)C_{17}}{BD(1)C_{20}-H_{21}}$	$BD^{*}(1) C_{20} H_{21}$ BD*(1) C ₁₇ - H ₁₀	2.00	0.88	0.045
$BD(1)C_{20}-H_{21}$	$BD^{*}(1) C_{17} H_{19}$	2.90	0.88	0.045
$\frac{BD(1)C_{20}-H_{21}}{BD(1)C_{20}-H_{22}}$	$BD^{*}(1) C_{17} H_{18}$	2.87	0.88	0.045
$BD(1)C_{20}-H_{22}$	$BD^{*}(1) C_{17} H_{18}$	2.85	0.89	0.045
$BD(1)C_{20}H_{22}$ BD(1)C_{22}-H_{24}	$BD^{*}(1) C_{23} H_{23}$ BD*(1) C_{23-H_{23}}	2.03	0.88	0.045
$BD(1)C_{23} - H_{24}$	$BD^{*}(1) C_{20} H_{21}$	2.91	0.89	0.045
$\frac{BD(1)C_{23}}{BD(1)C_{23}} = \frac{H_{24}}{H_{24}}$	$BD^{*}(1) C_{26} H_{27}$	2.07	0.89	0.045
$BD(1)C_{23} - H_{25}$	$BD^{*}(1) C_{20} H_{22}$	2.92	0.88	0.045
$BD(1)C_{23} - H_{25}$	$BD^{*}(1) C_{26} H_{28}$	2.07	0.88	0.045
$BD(1)C_{26} - H_{27}$	$BD^{*}(1) C_{23} H_{24}$	2.91	0.88	0.043
$BD(1)C_{26} - H_{27}$	BD*(1) C29- H31	2.07	0.90	0.045
$BD(1)C_{26}-H_{28}$	$BD^{*}(1) C_{23} H_{25}$	2.69	0.89	0.043
$\frac{BD(1)C_{26}-H_{28}}{BD(1)C_{26}-H_{28}}$	$BD^{(1)}C_{29} II_{30}$	3.67	1.24	0.044
$BD(1)C_{29}-H_{30}$	$RT^{*}(1)C_{26}$	3.07	1.24	0.001
$BD(1)C_{29}-II_{30}$	$RT^{*}(2)C_{26}$	3.21	1.49	0.002
$BD(1)C_{29}-II_{30}$	$RT^{*}(1)C_{32}$	3.17	1.24	0.002
$BD(1)C_{29}-II_{30}$	$RT^{*}(2)C_{32}$	3.14	0.86	0.001
$BD(1)C_{29}-H_{30}$	$BD^{*}(1) C_{26} H_{28}$	2.80	0.80	0.048
$BD(1)C_{29}-H_{30}$	$BD^{(1)}C_{32} = \Pi_{33}$	3.62	1.24	0.040
$BD(1)C_{29}-H_{31}$	$RT(1)C_{26}$	3.02	1.24	0.063
$BD(1)C_{29} - H_{31}$	$RT(2)C_{26}$ $RV^{*}(1)C_{26}$	3.54	1.47	0.005
$BD(1)C_{29} - H_{31}$	$RT^{(1)}C_{32}$	3 30	1.24	0.063
$BD(1)C_{29} - H_{31}$	$RT(2)C_{32}$ $RD^*(1)C_{32}$	3.30	0.87	0.003
$BD(1)C_{29}-H_{31}$	$BD^{*}(1) C_{26} H_{27}$	3.16	0.87	0.048
$BD(1)C_{29} - H_{31}$	$\frac{BD^{*}(1)C_{32}-H_{34}}{BD^{*}(1)C_{22}-H_{22}}$	2.70	0.07	0.040
$BD(1)C_{32} H_{33}$	$BD^{*}(1) C_{29} H_{30}$	2.70	0.90	0.044
$BD(1)C_{32} - H_{34}$	$BD^{*}(1) C_{29} H_{31}$	2.09	0.90	0.045
$BD(1)C_{35}H_{36}$	$BD^{*}(1) C_{32} H_{33}$	2.50	0.99	0.045
$\frac{BD(1)C_{35}}{BD(1)C_{25}-H_{27}}$	$BD^{*}(1) C_{38} H_{39}$	2.91	0.00	0.045
BD (1) C ₃₅ H ₃₇ BD (1) C ₃₅ - H ₂₇	$BD^{*}(1) C_{32} H_{40}$	2.02	0.90	0.045
$\frac{BD(1)C_{33}}{BD(1)C_{20}-H_{20}}$	$BD^{*}(1) C_{38} H_{40}$	2.90	0.89	0.045
$BD(1)C_{38}-H_{40}$	$BD^{*}(1) C_{41} H_{42}$	2.83	0.90	0.045
$\frac{BD(1)C_{38} - H_{40}}{BD(1)C_{41} - H_{40}}$	$\frac{BD^{*}(1)C_{21}-H_{23}}{BD^{*}(1)C_{22}-H_{22}}$	2.03	0.90	0.045
$BD(1)C_{41} - H_{42}$	BD*(1) C ₃₈ H ₃₉	2.90	0.88	0.045
$\frac{BD(1)C_{41}-H_{42}}{BD(1)C_{41}-H_{42}}$	$BD^{*}(1) C_{22} H_{40}$	2.05	0.88	0.045
$BD(1)C_{41} - H_{43}$	$BD^{*}(1) C_{44} - H_{45}$	2.90	0.88	0.045
$BD(1)C_{44} - H_{45}$	$BD^{*}(1) C_{44} H_{43}$	2.81	0.90	0.045
BD (1) C44 - H45	$BD^{*}(1) C_{47} H_{43}$	2.87	0.89	0.045
BD (1) C44 - H45	$BD^{*}(1) C_{41} - H_{42}$	2.87	0.89	0.045
BD (1) C ₄₄ - H ₄₆	BD*(1) C47- H49	2.86	0.90	0.045
BD (1) C ₄₇ - H ₄₈	BD*(1) C44- H45	2.90	0.88	0.045
BD (1) C ₄₇ - H ₄₈	BD*(1) C ₅₀ - H ₅₂	2.74	0.89	0.044
BD (1) C ₄₇ - H ₄₉	BD*(1) C ₄₄ - H ₄₆	2.92	0.88	0.045

Çizelge 4.15 (2) No'lu bileşiğin NBO analizi (devamı)

BD (1) C ₄₇ - H ₄₉	BD*(1) C ₅₀ - H ₅₁	2.82	0.88	0.044
BD (1) C ₅₀ - H ₅₁	BD*(1) C ₄₇ - H ₄₉	2.60	0.90	0.043
BD (1) C ₅₀ - H ₅₂	BD*(1) C ₄₇ - H ₄₈	2.87	0.89	0.045
BD (1) C ₅₀ - C ₅₃	RY*(15) C ₅₃	5.01	3.05	0.111
BD (1) C ₅₀ - C ₅₃	RY*(3) H ₅₆	2.85	0.94	0.046
BD (1) C ₅₀ - C ₅₃	RY*(5) H ₅₆	67.34	1.97	0.326
BD (1) C ₅₀ - C ₅₃	BD*(1) C ₂₆ - C ₂₉	4.82	1.20	0.068
BD (1) C ₅₀ - C ₅₃	BD*(1) C ₃₂ - H ₃₃	3.33	1.11	0.054
BD (1) C ₅₀ - C ₅₃	BD*(1) C ₃₅ - H ₃₆	11.66	1.52	0.119
BD (1) C ₅₀ - C ₅₃	BD*(1) C ₃₅ - H ₃₇	4.90	1.24	0.070
BD (1) C ₅₀ - C ₅₃	BD*(1) C ₅₃ - H ₅₄	3.41	2.84	0.088
BD (1) C ₅₀ - C ₅₃	BD*(1) C ₅₃ - H ₅₅	20.23	4.59	0.272
BD (1) C ₅₀ - C ₅₃	BD*(1) C ₅₃ - H ₅₆	12.98	3.42	0.188
BD (1) C ₅₃ - H ₅₄	RY*(15) C ₅₃	3.66	2.94	0.093
BD (1) C ₅₃ - H ₅₄	RY*(3) H ₅₆	5.36	0.83	0.060
BD (1) C ₅₃ - H ₅₄	RY*(5) H ₅₆	57.07	1.86	0.292
BD (1) C ₅₃ - H ₅₄	BD*(1) C ₂₆ - C ₂₉	3.73	1.09	0.057
BD (1) C ₅₃ - H ₅₄	BD*(1) C ₃₂ - H ₃₃	2.65	1.00	0.046
BD (1) C ₅₃ - H ₅₄	BD*(1) C ₃₅ - H ₃₆	8.91	1.41	0.100
BD (1) C ₅₃ - H ₅₄	BD*(1) C ₃₅ - H ₃₇	3.25	1.14	0.054
BD (1) C ₅₃ - H ₅₄	BD*(1) C ₄₇ - C ₅₀	4.10	0.92	0.055
BD (1) C ₅₃ - H ₅₄	BD*(1) C ₅₃ - H ₅₅	18.89	4.48	0.260
BD (1) C ₅₃ - H ₅₄	BD*(1) C ₅₃ - H ₅₆	8.11	3.31	0.146
BD (1) C ₅₃ - H ₅₅	RY*(15) C ₅₃	2.94	2.94	0.083
BD (1) C ₅₃ - H ₅₅	RY*(3) H ₅₆	7.28	0.83	0.069
BD (1) C ₅₃ - H ₅₅	RY*(5) H ₅₆	54.47	1.86	0.285
BD (1) C ₅₃ - H ₅₅	BD*(1) C ₂₆ - C ₂₉	4.23	1.09	0.061
BD (1) C ₅₃ - H ₅₅	BD*(1) C ₃₅ - H ₃₆	7.01	1.41	0.089
BD (1) C ₅₃ - H ₅₅	BD*(1) C ₃₅ - H ₃₇	6.35	1.13	0.076
BD (1) C ₅₃ - H ₅₅	BD*(1) C ₅₀ - H ₅₂	4.51	0.90	0.057
BD (1) C ₅₃ - H ₅₅	BD*(1) C ₅₃ - H ₅₅	8.06	4.48	0.170
BD (1) C ₅₃ - H ₅₅	BD*(1) C ₅₃ - H ₅₆	25.88	3.31	0.261
BD (1) C ₅₃ - H ₅₆	RY*(6) C ₅₃	2.92	1.39	0.057
BD (1) C ₅₃ - H ₅₆	RY*(9) C ₅₃	2.90	3.45	0.090
BD (1) C ₅₃ - H ₅₆	RY*(12) C ₅₃	2.59	3.90	0.090
BD (1) C ₅₃ - H ₅₆	RY*(15) C ₅₃	10.65	2.93	0.158
BD (1) C ₅₃ - H ₅₆	RY*(16) C ₅₃	4.54	2.71	0.099
BD (1) C ₅₃ - H ₅₆	RY*(5) H ₅₆	142.55	1.85	0.460
BD (1) C ₅₃ - H ₅₆	BD*(1) C ₂₆ - C ₂₉	11.15	1.08	0.098
BD (1) C ₅₃ - H ₅₆	BD*(1) C ₃₂ - H ₃₃	7.04	0.99	0.075
BD (1) C ₅₃ - H ₅₆	BD*(1) C ₃₅ -H ₃₆	23.86	1.41	0.164
BD (1) C ₅₃ - H ₅₆	BD*(1) C ₃₅ - H ₃₇	12.32	1.13	0.105
BD (1) C ₅₃ - H ₅₆	BD*(1) C ₅₀ - C ₅₃	2.57	0.90	0.043
BD (1) C ₅₃ - H ₅₆	BD*(1) C ₅₃ - H ₅₅	40.92	4.47	0.382
BD (1) C ₅₃ - H ₅₆	BD*(1) C ₅₃ - H ₅₆	33.13	3.31	0.295
CR (1) N ₄	RY*(1) C ₁	4.03	15.02	0.220
CR (1) C ₅₃	$RY^{*}(2) C_{53}$	5.69	10.94	0.223
CR (1) C ₅₃	RY*(6) C ₅₃	6.83	10.92	0.244
CR (1) C ₅₃	RY*(9) C ₅₃	14.25	12.98	0.384
$CR(1)C_{53}$	RY*(12) C ₅₃	13.86	13.43	0.385
$CR(1)C_{53}$	RY*(13) C ₅₃	3.09	11.95	0.172
$CR(1)C_{53}$	RY*(15) C ₅₃	47.63	12.47	0.688
CR (1) C ₅₃	$RY^{*}(16) C_{53}$	18.95	12.25	0.430

Çizelge 4.15 (2) No'lu bileşiğin NBO analizi (devamı)

CR (1) C ₅₃	RY*(1) H ₅₆	8.23	10.72	0.265
CR (1) C ₅₃	RY*(5) H ₅₆	544.88	11.39	2.224
CR (1) C ₅₃	BD*(1) C ₂₆ - C ₂₉	22.99	10.62	0.442
CR (1) C ₅₃	BD*(1) C ₃₂ - H ₃₃	13.41	10.53	0.337
CR (1) C ₅₃	BD*(1) C ₃₅ - H ₃₆	62.05	10.94	0.739
CR (1) C ₅₃	BD*(1) C ₃₅ - H ₃₇	26.34	10.66	0.475
CR (1) C ₅₃	BD*(1) C ₅₃ - H ₅₅	269.07	14.01	1.737
CR (1) C ₅₃	BD*(1) C ₅₃ - H ₅₆	176.29	12.84	1.346
LP (1) N ₂	BD*(2) C ₁ - N ₄	32.15	0.34	0.094
LP (1) N ₂	$BD^{*}(1) C_8 - H_9$	4.00	0.69	0.049
LP (1) N ₂	BD*(1) C ₈ - H ₁₀	4.99	0.67	0.054
LP (1) N ₄	$RY^{*}(1)C_{1}$	7.54	1.29	0.090
LP (1) N ₄	$BD^{*}(1) C_{1} - N_{2}$	11.23	0.79	0.085

Çizelge 4.15 (2) No'lu bileşiğin NBO analizi (devamı)

ELUMO= -0.10041 eV

 $E_{(LUMO+1)} = 0.18612 \text{ eV}$

 $\Delta E = E_{(HOMO)} - E_{(LUMO)} = 6.00011 \text{ eV}$

Еномо= -6.10052 eV

 $E_{(HOMO-1)}$ = -7.13510 eV

Şekil 4.28 (2) No'lu bileşiğin HOMO-LUMO enerji düzeyleri ve enerji hesabı

Şekil 4.29 (2) No'lu bileşiğin teorik DOS spektrumu

Şekil 4.30 (2) No'lu bileşiğin MEP haritası

	номо	LUMO	HOMO ⁻¹	LUMO ⁺¹	HOMO- LUMO	HOMO ⁻ ¹ - LUMO ⁺¹	Elektron egatiflik (χ)	Sertlik	Kimsaya l potansiy el (Pi)	Elektrofi llik endeksi (ω)	Yumuşaklık (S)	Elektronik yük (ΔN _{max})
toluen	-0,227	0,00001	-0,26813	0,00902	-0,22701	-0,27715	0,113495	0,113505	-0,1135	0,113485	8,810184573	0,999911898
karbontetr aklorür	-0,22681	-0,0002	-0,26774	0,00892	-0,22661	-0,27666	0,113505	0,113305	-0,11351	0,113705	8,825735846	1,001765147
asetonitril	-0,23068	0,00299	-0,27593	0,01042	-0,23367	-0,28635	0,113845	0,116835	-0,11385	0,110932	8,559079043	0,978892957
dikloromet an	-0,2297	0,00245	-0,27832	0,01013	-0,23215	-0,28845	0,113625	0,116075	-0,11363	0,111227	8,615119535	0,980322776
kloroform	-0,22869	0,00166	-0,27166	0,00978	-0,23035	-0,28144	0,113515	0,115175	-0,11352	0,111879	8,682439766	0,98558715
THF	-0,22946	0,00228	-0,2733	0,1006	-0,23174	-0,3739	0,11359	0,11587	-0,11359	0,111355	8,630361612	0,974408354
DMSO	-0,23076	0,00302	-0,27611	0,01045	-0,23378	-0,28656	0,11387	0,11689	-0,11387	0,110928	8,555051758	0,974163744
Metanol	-0,23065	0,00297	-0,27586	0,01041	-0,23362	-0,28627	0,11384	0,11681	-0,11384	0,110946	8,560910881	0,974574095
Etanol	-0,23053	0,00292	-0,2756	0,01038	-0,23345	-0,28598	0,113805	0,116725	-0,11381	0,110958	8,567144999	0,974983937
Gaz fazı	-0,22419	-0,00369	-0,26221	0,00684	-0,2205	-0,26905	0,11394	0,11025	-0,11394	0,117754	9,070294785	1,033469388

Sıcaklık (Kelvin)	H (KCal/Mol)	CV(Cal/Mol- Kelvin)	S (Cal/Mol- Kelvin)
100	328,064	44,109	112,011
200	333,495	64,429	150,241
298,15	340,993	89,485	181,204
400	351,621	119,268	212,238
500	364,941	146,535	242,291
600	380,797	169,934	271,497
700	398,805	189,677	299,525
800	418,632	206,408	326,24
900	440,005	220,687	351,632
1000	462,702	232,937	375,743

Çizelge 4.17 (2) No'lu bileşik için hesaplanmış termodinamik parametreler

Şekil 4.31 (2) No'lu bileşik için hesaplanmış termodinamik parametreler

$H^{0}m = 323,5736 + 0,027749T + 1,1x \ 10^{-4} \ T^{2},$	(R ² =0,9997)
$S = 79,04901 + 0,360703T - 6,4 \times 10^{-5} T^2,$	(R ² =0,9996)
CV= 7,01113 + 0,326451 T -9,8 x 10 ⁻⁵ T ² ,	$(\mathbf{R}^2 = 0,9979)$

Şekil 4.32 (2) No'lu.Bileşiğe ait teorik UV spektrumları

λ (nm)	E (eV)	MOs Katkısı	Çözücü
Teorik			
234	42619	H->L (%94)	
	47044	H->L+2(%53)	
212		H->L+4 (%19)	
212		H->L+1(%7)	
		H->L+3(%9)	Taluan
	47514	H->L+3(%20)	Toluen
		H->L+5(%53)	
210		H->L+8 (%12)	
		H>L+1 (%4)	
		H->L+7(%3)	
235	42540	H->L (%94)	
	47022	H->L+2(%22)	
212		H->L+4 (%20)	
		H->L+1(%8)	
		H->L+3(%8)	Varban Tatraklarür
210	47457	H->L+3(%21)	Karbon Tenakiorui
		H->L+5(%53)	
		H->L+8 (%12)	
		H>L+1 (%4)	
		H->L+7(%3)	
227	44033	H->L (%92)	
	47627	H->L+2(%79)	
209		H-1>L+2 (%4)	Asstanitril
		H->L+1(%4)	Asetomum
		H->L+4(%2)	
	48661	H->L+3(%14)	

Çizelge 4.18 (2) Bileşiğine ait maksimum absorbans değerleri

4. BULGULAR ve TARTIŞMAZehra DOGRU

205		$H \rightarrow L + 4(\%10)$	
		H>L+5 (%49)	
		$H \rightarrow L + 8(\% 12)$	
		$H \rightarrow L + 1(\%3)$	
		$H \rightarrow L +7(\%3)$	
		$H \rightarrow L + 9(\%3)$	
228	43703	H > L (%93)	Diklormetan
220	43703	H > L + 2(0.76)	Dikiofinetun
210	47408	H = 2L + 2(7070)	
210		Π -1>L+2 (%4)	
		$H \rightarrow L+1 (\%4)$	
		H -> L + 3(%4)	
		H -> L + 4(%5)	
		$H \rightarrow L + 9(\%2)$	_
	48373	$H \rightarrow L + 3(\%16)$	
206		$H \rightarrow L + 5(\% 50)$	
		H>L+8 (%12)	
		$H \rightarrow L + 1(\%3)$	
		H->L+4(%7)	
		H->L+7(%3)	
		$H \rightarrow L + 9(\%3)$	
230	43327	H->L (%94)	
211	47329	$H \rightarrow L + 2(\%69)$	_
	1,527	H = 1 > L + 2(% 3)	
		$H \to L + 2 (\%3)$ $H \to I + 1 (\%4)$	
		H > L + 3(% 5)	
		H > L + 4(0, 0)	
	180.02	$H \to L + 4(\%9)$	- Vlanoform
200	48062	$H \rightarrow L + 3(\%18)$	KIOIOIOIIII
208		$H \rightarrow L + 5(\%50)$	
		H>L+8 (%12)	
		$H \rightarrow L + 1(\%4)$	
		H -> L + 4(% 4)	
		H->L+7(%3)	
		$H \rightarrow L + 9(\%2)$	
229	43620	H->L (%93)	
	47449	H->L+2(%74)	
210		H-1>L+2 (%4)	
		H->L+1 (%4)	
		$H \rightarrow L + 3(\%3)$	
		$H \rightarrow L + 4(\%6)$	
		$H \rightarrow L + 9(\%2)$	
207	48302	$H \rightarrow L + 3(\%17)$	– THF
	10302	H > L + 5(% 17) $H_{-} > L + 5(\% 50)$	
		H > I + 8 (% 12)	
		H > L + 0 (7012)	
		II > L + I(704)	
		$\Pi - 2L + 4(\%0)$	
		$\Pi - > L + /(\% 3)$	
207	44041	H ->L +9(%2)	
221	44041	H->L (%92)	_
0 10	47594	H->L+2(%79)	
210		H-1>L+2 (%4)	
		H->L+1 (%4)	DMSO
		H->L+4(%2)	
	48677	H->L+3(%14)	
205		H->L+4(%11)	
		H>L+5 (%49)	

Çi	zelge 4.18	(2) Bi	leșiğine	ait mak	simum	absorbans	değerleri	(devamı)

4. BULGULAR ve TARTIŞMAZehra DOGRU

		H->L +8(%12)	
		H->L+1(%3)	
		H->L+7(%3)	
		H->L+9(%3)	
227	44026	H->L (%92)	
	47633	H->L+2(%79)	_
209		H-1>L+2 (%4)	
		H->L+1 (%4)	
		H->L+4(%2)	
	48653	H->L+3(%15)	- Matanal
205		H -> L + 4(% 10)	Wietanoi
		H>L+5 (%49)	
		H -> L + 8(% 12)	
		H->L+1(%3)	
		H->L+7(%3)	
		H->L+9(%3)	
227	43983	H->L (%93)	_
210	47601	H->L+2(%79)	
		H-1>L+2 (%4)	
		H->L+1 (%4)	
		H->L+4(%3)	
205	48617	H->L+3(%15)	Ftanol
		$H \rightarrow L + 4(\%10)$	Etailoi
		H>L+5 (%49)	
		$H \rightarrow L + 8(\%12)$	
		H->L+1(%3)	
		H->L+7(%3)	
		H->L+9(%3)	
			Asetik asit
			Dioksan
			Formik Asit

Çizelge 4.18 (2) Bileşiğine ait maksimum absorbans değerleri (devan	mı)
---	-----

Şekil 4.33 (3) No'lu bileşiğin Gaussian 09'da optimize edilmiş hali

Şekil 4.34 (3) No'lu bileşiğin teorik FT-IR spektrumu

Çizelge 4.17 (5) No lu olleşiğin teolik i ED analızı							
STRE	N_2H_3	f3640(100)					
STRE	C5H6	f2988(87)					
STRE	C5H7	f3046(78)	f3028(14)				
STRE	C ₈ H ₉	f3075(37)	f3028(53)				
STRE	C8H10	f3075(58)	f3054(10)	f3028(27)			
STRE	$C_{11}H_{12}$	f3054(76)	f3046(11)				
STRE	C11H13	f2975(88)					
STRE	C14H15	f3002(80)					
STRE	$C_{14}H_{16}$	f3099(90)					
STRE	C17H18	f3058(24)	f3054(11)	f3048(10)			
STRE	$C_{17}H_{19}$	f3058(12)	f3015(25)	f3012(19)			
STRE	C ₂₀ H ₂₁	f2998(10)	f2994(20)	f2991(16)			
STRE	C ₂₀ H ₂₂	f3058(10)	f3026(14)	f3019(20)			

Cizelge 4.19 (3) No'lu bileşiğin teorik PED analizi

Çizelge 4.19 (3) No	o'lu bileşiğin teorik PED ar	ıalizi (devamı)
------------------------------	------------------------------	-----------------

STRE	C23H24	f3003(12)	f2998(10)	f2993(15)			
STRE	C23H25	f3015(15)	f3009(13)	f2993(14)			
STRE	C ₂₆ H ₂₇	f3008(12)					
STRE	C ₂₆ H ₂₈	f3006(14)	f3003(11)	f2991(12)			
STRE	C29H30	f3006(20)					
STRE	C ₂₉ H ₃₁	f3012(11)	f3008(18)				
STRE	C ₃₂ H ₃₃	f3006(19)	f2995(11)	f2990(20)			
STRE	C ₃₂ H ₃₄	f3008(15)	f2995(10)	f2990(18)			
STRE	C35H36	f2994(10)	f2990(15)				
STRE	C35H37	f3006(12)	f2994(10)	f2990(14)			
STRE	C38H39	f3007(10)	f2993(10)	f2990(10)			
STRE	C38H40	f3007(13)					
STRE	C41H42	f2993(14)					
STRE	C41H43	f3007(17)	f2993(13)				
STRE	C44H45	f3007(12)	f2994(12)	f2991(14)	f2990(10)		
STRE	C44H46	f3008(11)	f2994(11)	f2991(13)	f2990(10)		
STRE	C47H48	f3033(10)	f3010(11)	f3007(10)			
STRE	C47H49	f3033(10)	f3010(10)	f3008(13)			
STRE	C50H51	f3082(73)	f3018(26)				
STRE	C50H52	f3082(16)	f3078(42)	f3018(35)			
STRE	C ₅₀ H ₅₃	f3082(10)	f3078(47)	f3018(36)			
STRE	N ₄ C ₁	f1700(74)					
STRE	N ₂ C ₁	f1536(11)	f836(18)	f530(10)			
STRE	N ₂ C ₁₁	f1144(32)					
STRE	$C_{14}C_{1}$	f1160(14)	f672(14)				
STRE	N ₄ C ₅	f1160(21)	f1074(10)	f943(15)			
STRE	C_8C_{11}	f943(13)	f898(12)				
STRE	C20C17	f1060(24)	f1043(18)				
STRE	$C_{23}C_{20}$	f1066(13)	f1064(10)	f1060(13)	f1023(10)		
STRE	C26C23	f1066(10)	f1064(14)	f1004(10)	f977(13)		
STRE	C29C26	f1064(19)	f992(18)				
STRE	C32C29	f1067(13)	f1064(10)	f992(11)	f977(10)		
STRE	C35C32	f1066(20)	f1043(15)	f977(13)			
STRE	C38C35	f1066(22)	f1023(12)	f992(14)			
STRE	C41C38	f1066(10)	f1060(11)	f1048(14)	f977(10)		
STRE	C44C41	f1067(23)	f1064(11)	f1023(10)	f1004(13)		
STRE	C47C44	f1067(13)	f896(30)				
STRE	C50C47	f1043(18)	f1023(10)	f1004(13)	1896(17)		
STRE	$C_{17}C_{14}$	f1048(20)	f1023(18)	f1004(20)			
BEND	$C_8C_{11}N_2$	1880(11)	1485(15)				
BEND	H ₃ N ₂ C ₁	f1201(25)	f1514(20)	f1010(17)	f1119(1()		
BEND	H ₆ C ₅ N ₄	$f_{1501(23)}$	$f_{1220(11)}$	11212(17)	11118(10)		
BEND	$H_7C_5H_6$	$f_{13}f_{4}(13)$	$f_{1250(12)}$	f1212(26)	f808(14)		
BEND	H9C8C11	$f_{1}^{11} g_{2}^{0}(84)$	11550(12)	11212(20)	1898(14)		
DEND	Hucking	$f_{1301(26)}$	$f_{1226(20)}$			-	
DEND		$f_{1536(40)}$	$f_{1220(29)}$	f1/02(12)			
BEND	HICHHIE	f1/30(40)	11514(55)	11492(12)			
BEND	H ₁₆ C ₁₄ H ₁₅	$f_{1334(10)}$	$f_{1327(12)}$				
BEND	H10C17H19	$f_{1510(13)}$	$f_{1505(13)}$	f1500(11)	f1480(18)		
BEND	H19C1/H18 H21C20C22	f1335(18)	11505(15)	11500(11)	11400(10)		
BEND	$H_{22}C_{20}H_{21}$	f1514(11)	f1510(10)	f1490(16)	f1486(23)		
BEND	H24C23C26	f1335(10)	11010(10)	111/0(10)	11100(23)		
BEND	H25C23H24	$f_{1514(12)}$	f1495(10)	f1487(22)			
BEND	H27C26C29	f1340(17)	$f_{1321(12)}$	11107(22)			
BEND	H28C26H27	f1517(10)	$f_{1487(17)}$	f1486(10)	f1484(13)		
BEND	H ₃₀ C ₂₉ C ₃₂	f1340(13)	f1324(15)				
BEND	H ₃₁ C ₂₉ H ₃₀	f1517(12)	f1505(11)	f1495(10)	f1490(16)	f1484(25)	
BEND	H ₃₃ C ₃₂ C ₃₅	f1340(10)	f1324(14)				
BEND	H34C32H33	f1517(13)	f1510(11)	f1490(21)	f1484(30)		
------	---	-----------	----------------	----------------	--------------	-----------	-----------
BEND	H ₃₆ C ₃₅ C ₃₈	f1340(14)	f1321(10)				
BEND	H37C35H36	f1517(13)	f1510(10)	f1491(20)	f1484(17)	f1484(14)	
BEND	H ₃₉ C ₃₈ C ₄₁	f1340(16)					
BEND	H40C38H39	f1517(12)	f1505(11)	f1495(14)	f1486(19)	f1484(21)	
BEND	$H_{42}C_{41}C_{44}$	f1334(12)	f1324(11)				
BEND	$H_{43}C_{41}H_{42}$	f1517(10)	f1514(10)	f1500(10)	f1490(10)	f1487(19)	f1484(19)
BEND	H45C44C47	f1335(10)	f1327(11)				
BEND	H46C44H45	f1514(11)	f1487(24)				
BEND	H48C47C50	f1307(12)					
BEND	H49C47H48	f1514(13)	f1510(15)	f1491(26)	f1486(13)		
BEND	H51C50H53	f1500(37)	f1414(31)				
BEND	H52C50H51	f1500(40)	f1414(30)				
BEND	H53C50H52	f1505(12)	f1500(14)	f1495(12)	f1414(25)		
BEND	$N_4C_1N_2$	f836(25)					
BEND	$C_1N_2C_{11}$	f982(10)	f530(32)				
BEND	$C_{14}C_1N_4$	f387(10)	f354(47)		_		
BEND	$C_5N_4C_1$	f982(12)	f530(24)				
BEND	C20C17C14	f223(12)	f134(12)				
BEND	$C_{23}C_{20}C_{17}$	f451(16)	f19(10)				
BEND	$C_{26}C_{23}C_{20}$	f506(13)	f406(11)	f19(12)			
BEND	$C_{29}C_{26}C_{23}$	f406(11)	f223(11)	f19(13)			
BEND	$C_{32}C_{29}C_{26}$	f515(13)	f387(10)	f19(12)			
BEND	C35C32C29	f506(17)	f329(10)	f134(15)	f19(11)		
BEND	C ₃₈ C ₃₅ C ₃₂	f515(12)	f485(12)				
BEND	C41C38C35	1506(10)	f251(10)				
BEND	$C_{44}C_{41}C_{38}$	f406(20)	f134(11)				
BEND	C47C44C41	f298(11)	f223(10)	(222(11))			
BEND	$C_{50}C_{47}C_{44}$	f451(15)	f329(16)	1223(11)			
BEND	$C_{17}C_{14}C_{1}$	1105(16)	f45(12)	(220/12)	(200)(14)	(D05(24)	
TORS	$H_3N_2C_1C_{14}$		138/(15)	1329(12)	1298(14)	1285(34)	
TORS	$H_6C_5N_4C_1$		f1393(10)	$f_{1350(11)}$	£909(14)		
TORS	H7C5N4C1		11393(17)	11350(10)	1898(14)		
TOPS	H9C8C111N2		$f_{1266}(14)$	$f_{1250(12)}$	f1212(12)		
TORS	$H_{10}C_8C_{11}N_2$		$f_{1202(10)}$	11550(15)	11212(15)		
TOPS	H12C11IN2C1		$f_{1202(16)}$	$f_{1250(14)}$	$f_{20}(12)$		
TOPS	HI3CIIN2CI		$f_{1393(10)}$	11330(14)	1696(12)		
TOPS	HayCaoCaoCac		$f_{1308(10)}$				
TORS	H21C20C23C26		$f_{1308(14)}$				
TORS	H22C20C23C26		f732(12)				
TORS	$H_{24}C_{23}C_{26}C_{29}$		$f_{1332(10)}$				
TORS	$H_{27}C_{26}C_{29}C_{32}$		f732(14)				
TORS	$H_{28}C_{26}C_{29}C_{32}$		f1402(11)				
TORS	$H_{30}C_{29}C_{32}C_{35}$		f732(11)				
TORS	H ₃₃ C ₃₂ C ₃₅ C ₃₈		f732(10)				
TORS	H ₃₄ C ₃₂ C ₃₅ C ₃₈		f1403(12)				
TORS	H ₃₆ C ₃₅ C ₃₈ C ₄₁		f732(14)				
TORS	H37C35C38C41		f1403(11)				
TORS	H39C38C41C44		f732(14)				
TORS	H51C50C47C44		f1500(14)	f244(45)			
TORS	H52C50C47C44		f896(14)	f244(22)			
TORS	H53C50C47C44		f896(13)	f244(22)			
TORS	N4C1N2C11		f71(23)	f45(22)			
TORS	C5N4C1N2		f1118(12)	f880(15)	f285(16)		
TORS	$C_8C_{11}N_2C_1$		f1118(11)				
TORS	$C_{20}C_{17}C_{14}C_{1}$		f102(15)	f65(28)	f36(31)		
TORS	$C_{23}C_{20}C_{17}C_{14}$		f137(10)	f119(15)	f82(16)	f29(11)	
TORS	C26C23C20C17		$f_{150(16)}$	f36(24)	f15(12)		

Çizelge 4.19 (3) No'lu bileşiğin teorik PED analizi (devamı)

TORS	$C_{29}C_{26}C_{23}C_{20}$	f165(16)	f137(13)	f49(18)	f15(11)	
TORS	$C_{32}C_{29}C_{26}C_{23}$	f169(13)	f82(14)	f15(16)		
TORS	C35C32C29C26	f165(23)	f102(20)	f15(12)		
TORS	$C_{38}C_{35}C_{32}C_{29}$	f169(15)	f119(19)	f49(14)	f15(11)	
TORS	$C_{41}C_{38}C_{35}C_{32}$	f165(16)	f137(22)	f65(17)	f36(15)	
TORS	$C_{44}C_{41}C_{38}C_{35}$	f169(11)	f150(19)	f82(14)	f49(27)	
TORS	$C_{47}C_{44}C_{41}C_{38}$	f137(16)	f102(27)	f65(22)		
TORS	$C_{50}C_{47}C_{44}C_{41}$	f150(14)	f119(23)	f82(20)		
TORS	$C_{17}C_{14}C_1N_2$	f29(47)				
OUT	$C_{14}N_2N_4C_1$	f733(18)	f672(15)			

Çizelge 4.19 (3) No'lu bileşiğin teorik PED analizi (devamı)

Şekil 4.35 (3) No'lu bileşiğin teorik ¹H-NMR spektrumu (CHCl₃ fazı)

Şekil 4.36 (3) No'lu bileşiğin teorik ¹H-NMR spektrumu (gaz fazı)

Atom	Teorik kimyasal kayma			
	(ppm)		kimyasal kayma	
	Gaz fazı	CHCl ₃	CHCl ₃ fazı	
3	3.40	3.82	6.20	
7	3.60	3.52	3.31	
6,13	3.40	3.42	3.31	
12	3.14	3.23	3.31	
16	2.08	1.90	2.21	
9	1.79	1.76	3.31	
15	1.62	1.82	2.21	
10	1.46	1.58	3.31	
18	1.46	1.36	1.2	
19	1.35	1.44	1.2	
48,49	1.17	1.27	1.2	
51	1.17	1.07	0.9	
22,25,43,37,36,40,42,31,27,39,34,30,33,45,28,2	1.17	1.17	1.2	
4,46,21,				
53,52	0.75	0.75	0.9	

Çizelge 4.20 (3) No'lu bileşiğin ¹H-NMR kimyasal kayma değerleri

Şekil 4.37 (3) No'lu bileşiğin deneysel ve teorik ¹H-NMR değerleri

Atom No	Yük	Atom No	Yük	Atom No	Yük	Atom No	Yük
C ₁	0.45455	C ₁₄	-0.41752	H ₂₇	0.18900	H ₄₀	0.18816
N ₂	-0.65859	H ₁₅	0.19130	H ₂₈	0.18745	C ₄₁	-0.37695
H ₃	0.38420	H ₁₆	0.22681	C ₂₉	-0.37583	H ₄₂	0.18812
N_4	-0.55948	C ₁₇	-0.37210	H ₃₀	0.18759	H ₄₃	0.18795
C ₅	-0.20436	H ₁₈	0.20089	H ₃₁	0.18856	C ₄₄	-0.37892
H ₆	0.18301	H ₁₉	0.18641	C ₃₂	-0.37592	H ₄₅	0.18759
H ₇	0.19351	C ₂₀	-0.37732	H ₃₃	0.18777	H ₄₆	0.18770
C ₈	-0.41158	H ₂₁	0.18606	H ₃₄	0.18834	C ₄₇	-0.38244

1 1 1 1 1 1	3 \ <u>X</u> T 21	1 .1 .2.	N / 11'1	•• 1	· 1 ·
$17 \times 10^{\circ} \times 10^{\circ}$	41 NO m	nilecioin	NIIIIIIZen	VU1K	CIZELGES1
	JIINUIU	DIFONETI	withing	vun	ULLEUSE

H ₉	0.1 9902	H ₂₂	0.19147	C ₃₅	-0.37585	H ₄₈	0.18746
H ₁₀	0.20614	C ₂₃	-0.37566	H ₃₆	0.18819	H49	0.18758
C ₁₁	-0.17231	H ₂₄	0.18707	H ₃₇	0.18781	C ₅₀	-0.57249
H ₁₂	0.19286	H ₂₅	0.19011	C ₃₈	-0.37606	H ₅₁	0.19902
H ₁₃	0.17431	C ₂₆	-0.37597	H ₃₉	0.18792	H ₅₂	0.19275
						H ₅₃	0.19265

Çizelge 4.21 (3) No'lu bileşiğin Mulliken yük çizelgesi (devamı)

Çizelge 4.22 (3) No'lu bileşiğin NBO analizi

Elektron veric	i Elektron alıcı NBO(j)	E(2)	Ej	Ei
NBO(i)		kcal/mol		
BD (2) C ₁ - N ₄	BD*(1) C ₅ - H ₆	4.78	0.69	0.052
BD (1) C ₁ - C ₁₄	BD*(1) C ₁ - N ₄	2.50	1.27	0.050
BD (1) C ₁ - C ₁₄	BD*(1) N ₂ - C ₁₁	3.92	0.97	0.055
BD (1) C ₁ - C ₁₄	BD*(1) N ₄ - C ₅	4.85	1.01	0.063
BD (1) N ₄ - C ₅	BD*(1) C ₁ -C ₁₄	5.80	1.10	0.072
BD (1) C ₅ - H ₆	$BD^{*}(2) C_{1} - N_{4}$	3.28	0.54	0.040
BD (1) C ₅ - H ₆	$BD^{*}(1) C_{8} - H_{9}$	2.76	0.88	0.044
BD (1) C ₅ - H ₇	$BD^{*}(1) C_{1} - N_{4}$	2.62	1.13	0.049
BD (1) C ₅ - H ₇	$BD^{*}(1) C_{8} - C_{11}$	2.86	0.86	0.044
BD (1) C ₈ - H ₉	$BD^{*}(1) C_{5} - H_{6}$	2.61	0.89	0.043
BD (1) C ₈ - H ₉	$BD^{*}(1) C_{11} - H_{13}$	2.65	0.87	0.043
BD (1) C ₈ - H ₁₀	BD*(1) N ₂ - C ₁₁	3.06	0.85	0.046
BD (1) C ₈ -H ₁₀	BD*(1) N ₄ - C ₅	3.41	0.89	0.049
BD (1) C ₈ - C ₁₁	BD*(1) N ₂ - H ₃	2.83	1.03	0.048
BD (1) C ₁₁ - H ₁₂	$BD^{*}(1) C_1 - N_2$	3.16	0.98	0.050
BD (1) C ₁₁ - H ₁₃	$BD^{*}(1) C_{8} - H_{9}$	2.56	0.91	0.043
BD (1) C ₁₄ - H ₁₅	$BD^{*}(1) C_{1} - N_{4}$	2.67	1.14	0.049
BD (1) C ₁₄ - H ₁₅	$BD^{*}(2) C_{1} - N_{4}$	2.95	0.54	0.038
BD (1) C ₁₄ - H ₁₅	BD*(1) C_{17} -H ₁₈	2.67	0.90	0.044
BD (1) C ₁₄ - H ₁₆	$BD^{*}(1) C_{1} - N_{2}$	5.02	0.95	0.062
BD (1) C ₁₄ -H ₁₆	$BD^{*}(1) C_{17} - H_{19}$	2.89	0.88	0.045
BD (1) C ₁₄ - C ₁₇	$BD^{*}(2) C_{1} - N_{4}$	2.85	0.64	0.040
BD (1) C ₁₇ - H ₁₈	$BD^{*}(1) C_{14} - H_{15}$	2.86	0.87	0.044
BD (1) C ₁₇ - H ₁₈	$BD^{*}(1) C_{20} - H_{21}$	2.90	0.88	0.045
BD (1) C ₁₇ - H ₁₉	BD*(1) C ₁₄ -H ₁₆	2.60	0.90	0.043
BD (1) C ₁₇ - H ₁₉	BD*(1) C ₂₀ -H ₂₂	2.82	0.89	0.045
BD (1) C ₂₀ - H ₂₁	$BD^{*}(1) C_{17} - H_{18}$	2.82	0.89	0.045
BD (1) C ₂₀ - H ₂₁	BD*(1) C ₂₃ -H ₂₅	2.87	0.88	0.045
BD (1) C ₂₀ - H ₂₂	$BD^{*}(1) C_{17} - H_{19}$	2.90	0.88	0.045
BD (1) C ₂₀ - H ₂₂	$BD^{*}(1) C_{23} - H_{24}$	2.89	0.88	0.045
BD (1) C ₂₃ - H ₂₄	BD*(1) C ₂₀ -H ₂₂	2.88	0.88	0.045
BD (1) C ₂₃ - H ₂₄	BD*(1) C ₂₆ -H ₂₇	2.88	0.88	0.045
BD (1) C ₂₃ - H ₂₅	$BD^{*}(1) C_{20} - H_{21}$	2.91	0.88	0.045
BD (1) C ₂₃ - H ₂₅	BD*(1) C ₂₆ -H ₂₈	2.90	0.88	0.045
BD (1) C ₂₆ - H ₂₇	BD*(1) C ₂₃ -H ₂₄	2.91	0.88	0.045
BD (1) C ₂₆ - H ₂₇	BD*(1) C ₂₉ -H ₃₀	2.90	0.88	0.045
BD (1) C ₂₆ - H ₂₈	BD*(1) C ₂₃ -H ₂₅	2.88	0.88	0.045
BD (1) C ₂₆ - H ₂₈	BD*(1) C ₂₉ -H ₃₁	2.90	0.88	0.045
BD (1) C ₂₉ - H ₃₀	BD*(1) C ₂₆ -H ₂₇	2.90	0.88	0.045
BD (1) C ₂₉ - H ₃₀	BD*(1) C ₃₂ -H ₃₄	2.89	0.88	0.045
BD (1) C ₂₉ - H ₃₁	BD*(1) C ₂₆ -H ₂₈	2.90	0.88	0.045

BD (1) C ₂₉ - H ₃₁	BD*(1) C ₃₂ -H ₃₃	2.90	0.88	0.045
BD (1) C ₃₂ - H ₃₃	BD*(1) C ₂₉ -H ₃₁	2.89	0.88	0.045
BD (1) C ₃₂ - H ₃₃	BD*(1) C ₃₅ -H ₃₆	2.90	0.88	0.045
BD (1) C ₃₂ - H ₃₄	BD*(1) C ₂₉ -H ₃₀	2.91	0.88	0.045
BD (1) C ₃₂ - H ₃₄	BD*(1) C ₃₅ -H ₃₇	2.90	0.88	0.045
BD (1) C ₃₅ - H ₃₆	BD*(1) C ₃₂ -H ₃₃	2.90	0.88	0.045
BD (1) C ₃₅ - H ₃₆	BD*(1) C ₃₈ -H ₃₉	2.90	0.88	0.045
BD (1) C ₃₅ - H ₃₇	BD*(1) C ₃₂ -H ₃₄	2.90	0.88	0.045
BD (1) C ₃₅ - H ₃₇	BD*(1) C ₃₈ -H ₄₀	2.89	0.88	0.045
BD (1) C ₃₈ - H ₃₉	BD*(1) C ₃₅ -H ₃₆	2.89	0.88	0.045
BD (1) C ₃₈ - H ₃₉	BD*(1) C ₄₁ -H ₄₂	2.90	0.88	0.045
BD (1) C ₃₈ - H ₄₀	BD*(1) C ₃₅ -H ₃₇	2.90	0.88	0.045
BD (1) C ₃₈ - H ₄₀	BD*(1) C ₄₁ -H ₄₃	2.90	0.88	0.045
BD (1) C ₄₁ - H ₄₂	BD*(1) C ₃₈ -H ₃₉	2.90	0.88	0.045
BD (1) C ₄₁ - H ₄₂	BD*(1) C ₄₄ -H ₄₅	2.91	0.88	0.045
BD (1) C ₄₁ - H ₄₃	BD*(1) C ₃₈ -H ₄₀	2.90	0.88	0.045
BD (1) C ₄₁ - H ₄₃	BD*(1) C ₄₄ -H ₄₆	2.90	0.88	0.045
BD (1) C ₄₄ - H ₄₅	BD*(1) C ₄₁ -H ₄₂	2.90	0.88	0.045
BD (1) C ₄₄ - H ₄₅	BD*(1) C ₄₇ -H ₄₉	2.81	0.88	0.044
BD (1) C ₄₄ - H ₄₆	BD*(1) C ₄₁ -H ₄₃	2.90	0.88	0.045
BD (1) C ₄₄ - H ₄₆	BD*(1) C ₄₇ -H ₄₈	2.81	0.88	0.044
BD (1) C ₄₇ - H ₄₈	BD*(1) C ₄₄ -H ₄₆	2.94	0.88	0.045
BD (1) C ₄₇ - H ₄₈	BD*(1) C ₅₀ -H ₅₂	2.86	0.88	0.045
BD (1) C ₄₇ - H ₄₉	BD*(1) C ₄₄ -H ₄₅	2.94	0.88	0.045
BD (1) C ₄₇ - H ₄₉	BD*(1) C ₅₀ -H ₅₃	2.86	0.88	0.045
BD (1) C ₅₀ - H ₅₁	BD*(1) C ₄₄ -C ₄₇	2.83	0.90	0.045
BD (1) C ₅₀ - H ₅₂	BD*(1) C ₄₇ -H ₄₈	2.68	0.89	0.044
BD (1) C ₅₀ - H ₅₃	BD*(1) C ₄₇ -H ₄₉	2.68	0.89	0.044
CR (1) N ₄	RY*(1) C ₁	3.83	15.07	0.215
LP (1) N ₂	BD*(2) C ₁ - N ₄	49.43	0.31	0.110
LP (1) N ₂	BD*(1) C ₁₁ -H ₁₂	2.61	0.64	0.039
LP (1) N ₂	BD*(1) C ₁₁ -H ₁₃	8.22	0.63	0.068
LP (1) N ₄	RY*(1) C ₁	6.89	1.31	0.087
LP (1) N ₄	RY*(1) C ₅	2.61	1.17	0.050
LP (1) N ₄	BD*(1) C ₁ - N ₂	16.53	0.78	0.103
LP (1) N ₄	BD*(1) C ₅ - H ₇	2.50	0.73	0.039
LP (1) N ₄	$BD^{*}(1) C_{5} - C_{8}$	5.16	0.71	0.055

Çizelge 4.22 (3) No'lu bileşiğin NBO analizi (devamı)

E_{LUMO}= -0.144 22 eV

 $\Delta E = E_{(HOMO)} - E_{(LUMO)} = 5.81915 \text{ eV}$

 $E_{LUMO+1} = 0.18803 \text{ eV}$

 $\Delta E = E_{(HOMO-1)} - E_{(LUMO+1)} = 6.63223 \text{ eV}$

Şekil 4.38 (3) No'lu bileşiğin HOMO-LUMO enerji düzeyleri ve enerji hesabı

Şekil 4.39 (3) No'lu bileşiğin teorik DOS spektrumu

Şekil 4.40 (3) No'lu bileşiğin MEP haritası

	НОМО	LUMO	HOMO ⁻¹	LUMO ⁺¹	HOMO- LUMO	HOMO ⁻	Elektron egatiflik	sertlik	Kimyasal potansiyel	Elektrofi lik	yumuşaklık (S)	Elektronik viik (AN _{max})
					20110	LUMO ⁺¹	(X)		(Pi)	endeksi(y une (initial)
toluen	-0,22797	-0,00183	-0,24084	0,0542	-0,22614	-0,29504	0,1149	0,11307	-0,1149	0,11676	8,844078889	1,016184664
karbontetr aklorür	-0,22775	-0,00197	-0,24052	0,00538	-0,22578	-0,2459	0,11486	0,11289	-0,11486	0,116864	8,85818053	1,017450616
asetonitril	-0,23233	-0,00074	-0,24757	0,00595	-0,23159	-0,25352	0,116535	0,115795	-0,11654	0,11728	8,635951466	1,006390604
dikloromet an	-0,23112	-0,00071	-0,24569	0,00584	-0,23041	-0,25153	0,115915	0,115205	-0,11592	0,116629	8,680178812	1,006162927
kloroform	-0,22991	-0,00094	-0,24382	0,00569	-0,22897	-0,24951	0,115425	0,114485	-0,11543	0,116373	8,734768747	1,008210683
THF	-0,23083	-0,00075	-0,24523	0,0058	-0,23008	-0,25103	0,11579	0,11504	-0,11579	0,116545	8,692628651	1,006519471
DMSO	-0,23243	-0,00076	-0,24774	0,00596	-0,23167	-0,2537	0,116595	0,115835	-0,1166	0,11736	8,63296931	1,006561057
Metanol	-0,23229	-0,00074	-0,24751	0,00595	-0,23155	-0,25346	0,116515	0,115775	-0,11652	0,11726	8,637443317	1,006391708
Etanol	-0,23214	-0,00072	-0,24728	0,00594	-0,23142	-0,25322	0,11643	0,11571	-0,11643	0,117154	8,642295394	1,006222453
Gaz fazı	-0,21915	-0,0053	-0,23682	0,00691	-0,21385	-0,24373	0,112225	0,106925	-0,11223	0,117788	9,352349778	1,049567454

Çizelge 4.23 (3) No'lu bileşiğin hesaplanan moleküler parametreleri

Sıcaklık (Kelvin)	H (KCal/Mol)	CV(Cal/Mol- Kelvin)	S (Cal/Mol- Kelvin)
100	308,811	31,622	87,476
200	313,107	53,65	117,768
298,15	322,472	84,881	161,189
400	328,887	106,227	171,729
500	340,845	132,413	198,747
600	355,25	155,09	225,011
700	371,748	174,334	251,01
800	390,02	190,666	275,651
900	409,801	204,579	299,167
1000	430,869	216,469	321,562

Çizelge 4.24 (3) No'lu bileşik için hesaplanmış termodinamik parametreler

$H^0m = 305,9704 + 0,017732 T + 1,08x 10^{-4} T^2,$	(R ² =0,9993)
$S = 62,18902 + 0,30032T - 4,2 \times 10^{-5} T^2,$	(R ² =0,9943)
CV= -2,12211+ 0,319887 T - 1,0 x 10 ⁻⁵ T ² ,	$(R^2 = 0.9985)$

Şekil 4.42 (3) No'lu.Bileşiğe ait teorik UV spektrumları

λ (nm)	E (eV)	MOs katkısı	Çözücü
Teorik			
237	42128	H-1->L+1 (%16)	
		H>L (%63)	
		H-1>L (%4)	
		H>L+1 (%8)	_
	43144	H-1>L(%14)	
231		H-1->L+1(%17)	Toluen
		H->L (33%)	Tolucii
		H>L+1 (% 22)	
		H-1->L+5(%2)	_
	46082	H-1->L (%53)	
217		H->L+1 (40%)	
		H>L (%4)	
237	42105	H-1->L+1 (%15)	
		H->L (%64)	
		H-1>L (%4)	
		H>L+1 (%8)	<u>.</u>
232	43075	H-1>L(%14)	
		H-1->L+1(%17)	Karbon Tetraklorür
		H->L (32%)	
		H>L+1 (%23)	
		H-1->L+5(%2)	_
217	46009	H-1->L (%56)	
		H->L+1 (%38)	
232	43052	H-1->L (%18)	Asetonitril

Çizelge 4.25 (3) Bileşiğe ait maksimum absorbans değerleri

		H-1->L+1	
		(%14)	
		H->L (%58)	
		H>L+1 (%2)	_
224	44040	H-1>L(%21)	
		H-1->L+1(%10)	
		H->L (33%)	
		H>L+1 (%27)	
	47502	H-1->L (%26)	-
210		H->L+1 (%54)	
		H->L (%4)	
		H-1->L+5(%7)	
233	42817	H-1->L(%14)	Diklormetan
		H-1->L+1	
		(%16)	
		H->I (%58)	
		H > L (% 4)	
226	44127	$\frac{\Pi > L + I (704)}{U + 1 > I (704)}$	-
220	44137	II - 1 > L(7019) II = 1 > I = 1(0/(11))	
		$\Pi - 1 - 2L + 1(\% 11)$	
		$\Pi - \geq L(33\%)$	
	47100	H > L + I (% 23)	-
212	4/122	H-1->L(%30)	
212		$H \rightarrow L + 1 (\% 53)$	
		H->L (%4)	
		H-1->L+5(%8)	
234	42582	H-1->L (%10)	
		H-1->L+1	
		(%16)	
		H->L (%58)	
		H>L+1 (%6)	_
228	43775	H-1>L(%17)	Vloroform
		H-1->L+1(%13)	KI010101111
		H->L (37%)	
		H>L+1 (%23)	
213	46747	H-1->L (%36)	-
		H->L+1 (%51)	
		H-1->L+5(%5)	
233	42796	H-1->L (%13)	
	,,,	H-1->L+1	
		(%16)	
		$H \rightarrow L(\%58)$	
		H > L + 1 (%4)	
226	14054	$H = 1 \times 1 (\% + 18)$	-
220	44034	H = 1 > L(7010) H = 1 > L + 1(% 16)	тиг
		U > I (36%)	1111
		H > L (30%)	
212	47020	$\Pi > L + I (\% 24)$	-
21 <i>2</i>	4/039	Π -1->L($\%$ 51)	
		$H \rightarrow L + 1 (\% 53)$	
		H ->L(%2)	
	10010	H-1->L+5(%6)	
232	43048	H-1->L (%18)	
		H-1->L+1	
		(%14)	DMSO
		H->L (%59)	
		H>L+1 (%2)	

Çizelge 4.25 (3) Bileşiğe ait maksimum absorbans değerleri (devamı)

224	44488	H-1>L(%21)	
		H-1 > L + 1(% 11)	
		H->L (33%)	
		H>L+1 (%27)	
	47507	H-1->L (%26)	
210		H->L+1 (%55)	
		H->L (%4)	
		H-1->L+5(%7)	
232	43049	H-1->L (%18)	
		H-1->L+1	
		(%14)	
		H->L (%58)	
224		H>L+1(%2)	
224	44461	H-1>L(%21)	Matana 1
		H-1->L+1(%10)	Metanol
		H > L (34%) H > L + 1 (0.27)	
	47405	H > L + I (% 27)	
210	47495	H-1->L(%27) H>1+1(%54)	
210		$H_{->L} (\%/4)$	
		H > L (% +) H-1->L +5(%7)	
232	43015	$H^{-1}>L(\%17)$	
		H-1->L+1	
		(%14)	
		H->L (%58)	
		H>L+1 (%2)	
225	44420	H-1>L(%21)	
		H-1->L	
		+1(%11)	
		H->L (34%)	Etanol
		H>L+1(%26)	
210	47441	H-1->L (%26)	
		H->L+1	
		(%54)	
		$H \rightarrow L(\%4)$	
		H_1_\	
		11-1-2L	
		+3(%)	

Çizelge 4.25 (3) Bileşiğe ait maksimum absorbans değerleri (devamı)

4.2.4. 2-pentadesil-3,4,5,6-tetrahidro-1H-pirimidin (4) Analizi

Şekil 4.43 (4) No'lu bileşiğin Gaussian 09'da optimize edilmiş hali

Şekil 4.44 (4) No'lu bileşiğin teorik FT-IR spektrum

30-						
STRE	N_2H_3	f3642(100)				
STRE	C ₅ H ₆	f2988(86)				
STRE	C ₅ H ₇	f3046(78)	f3028(14)			
STRE	C ₈ H ₉	f3075(37)	f3028(53)			
STRE	C ₈ H ₁₀	f3075(59)	f3054(10)	f3028(26)		
STRE	$C_{11}H_{12}$	f3054(77)	f3046(12)			
STRE	$C_{11}H_{13}$	f2975(87)				
STRE	C ₁₄ H ₁₅	f3004(19)	f3004(68)			
STRE	$C_{14}H_{16}$	f3099(89)				
STRE	C ₁₇ H ₁₈	f3059(30)				
STRE	C ₁₇ H ₁₉	f3059(14)	f3016(29)	f3013(17)	f3010(13)	
STRE	$C_{20}H_{21}$	f2996(12)	f2993(18)			
STRE	$C_{20}H_{22}$	f3059(10)	f3025(14)	f3019(15)	f3010(10)	
STRE	C ₂₃ H ₂₄	f3000(11)				

Çizelge 4.26 (4) No'lu bileşiğin teorik PED analizi

STRE	$C_{23}H_{25}$	f3016(12)	f3010(14)				
STRE	C ₂₆ H ₂₇	f3010(11)	f3008(14)	f2993(13)	f2991(10)		
STRE	C ₂₆ H ₂₈	f3004(10)	f2993(14)	f2991(13)			
STRE	C ₂₉ H ₃₀	f3006(12)					
STRE	C ₂₉ H ₃₁	f3008(15)					
STRE	C ₃₂ H ₃₃	f3006(17)					
STRE	C ₃₂ H ₃₄	f3010(12)					
STRE	C ₃₅ H ₃₆	f3007(12)					
STRE	C ₃₅ H ₃₇	f3006(16)					
STRE	C ₃₈ H ₃₉	f2990(16)					
STRE	$C_{38}H_{40}$	f3007(10)	f2990(17)				
STRE	$C_{41}H_{42}$	f3006(11)	f2993(11)	f2989(15)			
STRE	$C_{41}H_{43}$	f3010(12)	f3006(10)	f2993(11)	f2989(15)		
STRE	C44H45	f3006(15)					
STRE	C ₄₄ H ₄₆	f3006(11)					
STRE	C47H48	f3006(11)	f2991(11)				
STRE	C47H49	f3006(11)	f2991(10)				
STRE	C ₅₀ H ₅₁	f3007(10)	f2993(12)	f2991(13)	f2989(10)		
STRE	C ₅₀ H ₅₂	f3008(11)	f2993(11)	f2991(12)			
STRE	C ₅₃ H ₅₄	f3008(13)					
STRE	C ₅₃ H ₅₅	f3010(10)	f3007(15)				
STRE	C ₅₆ H ₅₇	f3082(73)	f3017(26)				
STRE	C ₅₆ H ₅₈	f3082(12)	f3078(44)	f3017(36)			
STRE	C ₅₆ H ₅₉	f3082(13)	f3078(44)	f3017(36)			
STRE	N_4C_1	f1700(74)	22 (10)				
STRE	N_2C_1	f1536(11)	1836(19)				
STRE	N_2C_{11}	f1145(30)					
STRE	$C_{14}C_1$	f1159(14)	f6/4(14)				
STRE	N_4C_5	f1159(21)	1933(10)				
SIKE	C_8C_{11}	1900(11)	$f_{105}(21)$	£1042(12)	$f_{101}(11)$		
SIKE	$C_{20}C_{17}$	$f_{1060(12)}$	$f_{1000(21)}$	11043(12)	11010(11)		
SIKE	$C_{23}C_{20}$	$f_{1064(16)}$	f1000(13)	f081(13)			
SIRE	$C_{26}C_{23}$	$f_{1067(16)}$	f1043(10)	f081(13)			
STRE	$C_{29}C_{26}$	$f_{1067(12)}$	f1066(12)	1901(12)			
STRE	$C_{32}C_{29}$	f1066(15)	f981(17)				
STRE	$C_{33}C_{35}$	$f_{1066(17)}$	1)01(17)				
STRE	C41C38	f1068(10)	f1067(14)	f1043(11)			
STRE	$C_{44}C_{41}$	f1067(19)	f1064(11)	f1016(13)			
STRE	$C_{47}C_{44}$	f1067(11)	f1064(10)	f1043(10)			
STRE	$C_{50}C_{47}$	f1068(21)	f1023(10)	f1000(14)			
STRE	C ₅₃ C ₅₀	f1068(19)	f896(23)	, í			
STRE	C ₅₆ C ₅₃	f1056(15)	f1043(11)	f1023(14)	f1000(11)	f896(13)	
STRE	$C_{17}C_{14}$	f1043(14)	f1023(19)	f1000(15)			
BEND	$C_8C_{11}N_2$	f879(11)	f496(20)				
BEND	$H_3N_2C_1$	f1536(30)	f1513(20)				
BEND	$H_6C_5N_4$	f1301(28)	f1226(12)	f1212(17)	f1118(17)		
BEND	$H_7C_5H_6$	f1513(15)	f1494(15)	f1494(48)			
BEND	$H_9C_8H_{10}$	f1483(85)					
BEND	$H_{10}C_8C_{11}$	f1351(20)	f1226(10)	f1212(21)			
BEND	$H_{12}C_{11}N_2$	f1301(26)	f1226(34)				

Çizelge 4.26 (4) No'lu bileşiğin teorik PED analizi (devamı)

BEND	$H_{13}C_{11}H_{12}$	f1536(39)	f1513(34)	f1494(10)			
BEND	$H_{15}C_{14}C_{17}$	f1324(11)					
BEND	$H_{16}C_{14}H_{15}$	f1482(48)					
BEND	$H_{18}C_{17}C_{20}$	f1331(11)					
BEND	$H_{19}C_{17}H_{18}$	f1511(11)	f1508(11)	f1503(11)	f1482(16)		
BEND	$H_{21}C_{20}H_{22}$	f1490(21)	f1487(17)	f1485(12)			
BEND	$H_{22}C_{20}C_{23}$	f1336(10)	f1328(12)				
BEND	$H_{24}C_{23}C_{26}$	f1342(13)					
BEND	$H_{25}C_{23}H_{24}$	f1516(11)	f1489(23)	f1482(10)			
BEND	$H_{27}C_{26}C_{29}$	f1342(11)					
BEND	$H_{28}C_{26}H_{27}$	f1516(12)	f1503(11)	f1489(23)	f1486(19)		
BEND	$H_{31}C_{29}H_{30}$	f1516(12)	f1508(10)	f1485(23)	f1483(12)		
BEND	$H_{33}C_{32}C_{35}$	f1342(14)	f1331(10)				
BEND	$H_{34}C_{32}H_{33}$	f1516(10)	f1498(10)	f1490(12)	f1486(11)	f1485(11)	
BEND	H ₃₆ C ₃₅ C ₃₈	f1342(15)	f1331(10)				
BEND	H ₃₇ C ₃₅ H ₃₆	f1511(12)	f1503(10)	f1489(16)	f1486(12)	f1483(21)	
BEND	$H_{39}C_{38}C_{41}$	f1342(10)	f1336(13)				
BEND	$H_{40}C_{38}H_{39}$	f1487(14)	f1483(29)				
BEND	$H_{42}C_{41}C_{44}$	f1338(10)					
BEND	$H_{43}C_{41}H_{42}$	f1508(10)	f1498(10)	f1490(12)	f1487(11)	f1483(15)	f1483(17)
BEND	$H_{46}C_{44}H_{45}$	f1515(10)	f1486(16)	f1483(27)			
BEND	$H_{48}C_{47}C_{50}$	f1336(13)	f1328(15)				
BEND	$H_{49}C_{47}H_{48}$	f1515(12)	f1503(11)	f1486(10)	f1485(15)	f1483(15)	
BEND	$H_{51}C_{50}C_{53}$	f1331(11)					
BEND	$H_{52}C_{50}H_{51}$	f1515(12)	f1487(22)	f1485(17)			
BEND	H ₅₄ C ₅₃ C ₅₆	f1324(12)					
BEND	$H_{55}C_{53}H_{54}$	f1515(12)	f1511(12)	f1490(17)	f1486(10)		
BEND	H57C56H59	f1500(37)	f1414(31)				
BEND	H ₅₈ C ₅₆ H ₅₇	f1500(39)	f1414(31)				
BEND	H ₅₉ C ₅₆ H ₅₈	f1508(10)	f1503(12)	f1498(12)	f1414(26)		
BEND	$N_4C_1N_2$	f836(24)	f496(10)				
BEND	$C_1N_2C_{11}$	f529(31)					
BEND	$C_{14}C_1N_4$	f361(26)	f354(32)				
BEND	$C_5N_4C_1$	f529(24)					
BEND	$C_{20}C_{17}C_{14}$	f249(15)					
BEND	$C_{23}C_{20}C_{17}$	f456(13)	f289(10)				
BEND	$C_{26}C_{23}C_{20}$	f510(10)	f444(14)	f341(12)			
BEND	$C_{29}C_{26}C_{23}$	f519(12)	f456(11)	f249(10)	f144(12)	f15(11)	
BEND	$C_{32}C_{29}C_{26}$	f510(13)	f289(11)	f184(10)	f15(11)		
BEND	$C_{35}C_{32}C_{29}$	f510(15)	f341(11)	f15(11)			
BEND	$C_{38}C_{35}C_{32}$	f519(15)	f144(10)				
BEND	$C_{41}C_{38}C_{35}$	f510(16)	f341(10)				
BEND	$C_{44}C_{41}C_{38}$	f249(13)					
BEND	$C_{47}C_{44}C_{41}$	f519(11)	f289(11)				
BEND	$C_{53}C_{50}C_{47}$	f444(10)	f249(13)				
BEND	$C_{56}C_{53}C_{50}$	f456(12)	f398(13)	f289(12)			
BEND	$C_{17}C_{14}C_{1}$	f90(11)	f37(11)				
TORS	$H_3N_2C_1C_{14}$	f398(10)	f354(12)	f284(45)			
TORS	$H_6C_5N_4C_1$	f1392(10)	f1351(10)				
TORS	$H_7C_5N_4C_1$	f1392(18)	f1351(10)	f1301(11)			
TORS	$H_9C_8C_{11}N_2$	f1365(46)	f1212(14)				

Çizelge 4.26 (4) No'lu bileşiğin teorik PED analizi (devamı)

TORS	$H_{10}C_8C_{11}N_2$	f1365(15)	f674(11)			
TORS	$H_{12}C_{11}N_2C_1$	f1392(10)				
TORS	$H_{13}C_{11}N_2C_1$	f1392(17)	f1351(15)			
TORS	$H_{19}C_{17}C_{20}C_{23}$	f1386(11)				
TORS	$H_{24}C_{23}C_{26}C_{29}$	f732(13)				
TORS	$H_{25}C_{23}C_{26}C_{29}$	f1336(10)				
TORS	$H_{27}C_{26}C_{29}C_{32}$	f732(12)				
TORS	$H_{31}C_{29}C_{32}C_{35}$	f1402(10)				
TORS	$H_{33}C_{32}C_{35}C_{38}$	f730(12)				
TORS	$H_{34}C_{32}C_{35}C_{38}$	f1402(10)				
TORS	$H_{39}C_{38}C_{41}C_{44}$	f730(13)				
TORS	$H_{42}C_{41}C_{44}C_{47}$	f730(15)				
TORS	$H_{43}C_{41}C_{44}C_{47}$	f1397(10)				
TORS	$H_{45}C_{44}C_{47}C_{50}$	f730(13)				
TORS	$H_{46}C_{44}C_{47}C_{50}$	f1397(12)				
TORS	$H_{57}C_{56}C_{53}C_{50}$	f1500(15)	f248(42)			
TORS	$H_{58}C_{56}C_{53}C_{50}$	f248(19)				
TORS	$H_{59}C_{56}C_{53}C_{50}$	f896(11)	f248(23)			
TORS	$N_4C_1N_2C_{11}$	f60(22)	f37(12)			
TORS	$C_5N_4C_1N_2$	f1118(11)	f879(13)	f284(17)		
TORS	$C_8 C_{11} N_2 C_1$	f1118(11)				
TORS	$C_{20}C_{17}C_{14}C_{1}$	f79(22)	f47(22)	f10(11)		
TORS	$C_{23}C_{20}C_{17}C_{14}$	f129(13)	f98(17)	f24(10)		
TORS	$C_{26}C_{23}C_{20}C_{17}$	f154(14)	f11(13)	f10(10)		
TORS	$C_{29}C_{26}C_{23}C_{20}$	f168(13)	f144(13)	f67(14)		
TORS	$C_{32}C_{29}C_{26}C_{23}$	f167(10)	f98(12)	f11(19)		
TORS	$C_{35}C_{32}C_{29}C_{26}$	f168(12)	f167(10)	f115(10)	f10(11)	
TORS	$C_{38}C_{35}C_{32}C_{29}$	f129(18)	f67(10)	f47(11)	f11(17)	
TORS	$C_{41}C_{38}C_{35}C_{32}$	f144(11)	f79(15)	f10(15)		
TORS	$C_{44}C_{41}C_{38}C_{35}$	f154(10)	f98(17)	f41(16)		
TORS	$C_{47}C_{44}C_{41}C_{38}$	f144(20)	f47(17)	f24(12)		
TORS	$C_{50}C_{47}C_{44}C_{41}$	f154(20)	f67(20)	f41(18)		
TORS	$C_{53}C_{50}C_{47}C_{44}$	f115(16)	f79(24)	f47(16)		
TORS TORS	$\begin{array}{c} C_{53}C_{50}C_{47}C_{44}\\ C_{56}C_{53}C_{50}C_{47}\end{array}$	f115(16) f154(10)	f79(24) f129(18)	f47(16) f98(20)	f67(14)	
TORS TORS TORS	$\begin{array}{c} C_{53}C_{50}C_{47}C_{44}\\ C_{56}C_{53}C_{50}C_{47}\\ C_{17}C_{14}C_{1}N_{2} \end{array}$	f115(16) f154(10) f41(13)	f79(24) f129(18) f24(25)	f47(16) f98(20) f10(10)	f67(14)	

Çizelge 4.26 (4) No'lu bileşiğin teorik PED analizi (devamı)

Şekil 4.45 (4) No'lu bileşiğin teorik ¹H-NMR spektrumu (CHCl₃ fazı)

Şekil 4.46 (4) No'lu bileşiğin teorik ¹H-NMR spektrumu (gaz fazı)

Atom	Teorik		deneysel		
	Kim	nyasal kayma (ppm)		
	CHCl ₃ fazı	Gaz fazı	CHCl ₃ fazı		
7	4.11	4.16	3.31		
6	3.95	3.96	3.31		
13	3.62	3.58	3.31		
12	3.47	3.40	3.31		
3	2.82	2.43	6.19		
16	2.54	2.68	2.21		
9	2.44	2.43	3.31		
15	2.26	2.05	2.21		

Çizelge 4.27 (4) No'lu bileşiğin ¹H-NMR kimyasal kayma değerleri

19	1.90	1.90	1.30
10	1.90	1.78	3.31
18	1.70	1.78	1.30
54,22,25,55,43,42,46,24,48,27,45,49,21,40,39,31,28,	1.50	1.50	1.30
36,37,30,34,33,52,51			
57	1.20	1.21	0.90
59,58	0.84	0.84	0.90

Çizelge 4.27 (4) No'lu bileşiğin ¹H-NMR kimyasal kayma değerleri (devamı)

Şekil 4.47 (4) No'lu bileşiğin deneysel ve teorik ¹H-NMR değerleri

Atom No	Yük	Atom No	Yük	Atom No	Yük	Atom No	Yük
C ₁	0.45458	H ₁₆	0.22619	H ₃₁	0.18406	H ₄₆	0.18803
N ₂	-0.65818	C ₁₇	-0.37226	C ₃₂	-0.40108	C47	-0.37699
H ₃	0.38457	H ₁₈	0.20166	H ₃₃	0.18722	H48	0.18801
N_4	-0.56068	H19	0.18700	H ₃₄	0.18768	H49	0.18804
C ₅	-0.20427	C ₂₀	-0.37803	C ₃₅	-0.38146	C ₅₀	-0.37893
H ₆	0.18293	H ₂₁	0.18581	H ₃₆	0.18776	H ₅₁	0.18767
H ₇	0.19348	H ₂₂	0.19111	H ₃₇	0.18747	H ₅₂	0.18758
C ₈	-0.41158	C ₂₃	-0.38131	C ₃₈	-0.37661	C ₅₃	-0.38243
H ₉	0.19892	H ₂₄	0.18681	H ₃₉	0.18779	H54	0.18749
H ₁₀	0.20617	H ₂₅	0.18977	H ₄₀	0.18796	H ₅₅	0.18756
C ₁₁	-0.17236	C ₂₆	-0.40115	C ₄₁	-0.37619	C ₅₆	-0.57252
H ₁₂	0.19286	H ₂₇	0.18832	H ₄₂	0.18797	H ₅₇	0.19903
H ₁₃	0.17451	H ₂₈	0.18690	H ₄₃	0.18788	H ₅₈	0.19274
C ₁₄	-0.41667	C ₂₉	-0.28928	C44	-0.37610	H59	0.19263
H ₁₅	0.18996	H ₃₀	0.18321	H ₄₅	0.18796		

Çizelge 4.28 (4) No'lu bileşiğin Mulliken yük çizelgesi

Çizelge 4.29 (4) No'lu bileşiğin NBO metotları ile hesaplanan yük dağılımları

Elektron verici	Elektron alıcı	E(2) kcal/mol	Ej	Ei
NBO(i)	NBO(j)			
$BD(2)C_1 - N_4$	$BD^{*}(1)C_{5}-H_{6}$	4.76	0.70	0.052

BD (1) C ₁ - C ₁₄	BD*(1) N ₂ - C ₁₁	3.92	0.98	0.055
BD (1) C ₁ - C ₁₄	BD*(1) N ₄ - C ₅	4.86	1.02	0.063
BD (1) N ₂ - H ₃	BD*(1) C ₁ - N ₄	4.45	1.30	0.068
BD (1) N ₄ - C ₅	BD*(1) C ₁ - C ₁₄	5.79	1.10	0.072
BD (1) C ₅ - H ₆	BD*(2) C ₁ - N ₄	3.22	0.54	0.039
BD (1) C ₈ - H ₁₀	BD*(1) N ₂ - C ₁₁	3.04	0.86	0.046
BD (1) C ₈ - H ₁₀	BD*(1) N ₄ - C ₅	3.39	0.89	0.049
BD (1) C ₁₁ - H ₁₂	BD*(1) C ₁ - N ₂	3.15	0.98	0.050
BD (1) C ₁₄ - H ₁₆	BD*(1) $C_1 - N_2$	4.82	0.95	0.061
BD (1) C ₁₄ - C ₁₇	BD*(2) C ₁ - N ₄	3.04	0.65	0.042
BD (1) C ₂₉ - H ₃₀	RY*(1) C 26	3.70	1.24	0.061
BD (1) C ₂₉ - H ₃₀	RY*(2) C ₂₆	3.20	1.49	0.062
BD (1) C 29- H30	RY*(1) C ₃₂	3.73	1.24	0.061
BD (1) C 29- H ₃₀	RY*(2) C ₃₂	3.13	1.48	0.061
BD (1) C ₂₉ - H ₃₀	BD*(1) C 26-H27	3.24	0.86	0.047
BD (1) C ₂₉ -H ₃₀	BD*(1) C ₃₂ - H ₃₄	3.24	0.87	0.048
BD (1) C ₂₉ - H ₃₁	RY*(1) C ₂₆	3.65	1.24	0.061
BD (1) C ₂₉ - H ₃₁	RY*(2) C ₂₆	3.27	1.49	0.063
BD (1) C ₂₉ - H ₃₁	RY*(1) C ₃₂	3.55	1.24	0.060
BD (1) C ₂₉ - H ₃₁	RY*(2) C ₃₂	3.33	1.48	0.063
BD (1) C ₂₉ - H ₃₁	BD*(1) C ₂₆ - H ₂₈	3.25	0.87	0.048
BD (1) C ₂₉ - H ₃₁	BD*(1) C ₃₂ - H ₃₃	3.25	0.86	0.047
BD (1) C 53- C56	RY*(15) C ₅₆	3.03	2.75	0.082
BD (1) C ₅₃ - C ₅₆	RY*(17) C ₅₆	3.89	3.33	0.102
BD (1) C ₅₃ - C ₅₆	RY*(3) H 59	6.51	0.90	0.069
BD (1) C ₅₃ - C ₅₆	RY*(5) H ₅₉	68.54	1.98	0.330
BD (1) C 53- C56	BD*(1) C ₃₅ - H ₃₆	6.60	1.25	0.081
BD (1) C ₅₃ - C ₅₆	BD*(1) C ₃₈ - H ₃₉	6.20	1.27	0.079
BD (1) C ₅₃ - C ₅₆	BD*(1) C ₃₈ - C ₄₁	10.84	1.46	0.112
BD (1) C 53- C56	BD*(1) C ₅₆ - H ₅₇	3.89	2.85	0.094
BD (1) C ₅₃ - C ₅₆	BD*(1) C ₅₆ - H ₅₈	7.67	3.23	0.141
BD (1) C ₅₃ - C ₅₆	BD*(1) C ₅₆ - H ₅₉	26.78	4.50	0.310
BD (1) C ₅₆ - H ₅₇	RY*(3) H 59	5.50	0.80	0.059
BD (1) C ₅₆ - H ₅₇	RY*(5) H ₅₉	56.12	1.88	0.290
BD (1) C ₅₆ - H ₅₇	BD*(1) C ₃₅ - H ₃₆	5.14	1.14	0.068
BD (1) C ₅₆ - H ₅₇	BD*(1) C ₃₈ - H ₃₉	4.65	1.17	0.066
BD (1) C ₅₆ - H ₅₇	BD*(1) C ₃₈ - C ₄₁	7.89	1.35	0.092
BD (1) C ₅₆ - H ₅₇	BD*(1) C ₅₆ - H ₅₈	9.26	3.12	0.152
BD (1) C ₅₆ -H ₅₇	BD*(1) C ₅₆ - H ₅₉	19.81	4.39	0.263
BD (1) C ₅₆ - H ₅₈	RY*(2) H ₅₉	4.15	1.48	0.070
BD (1) C ₅₆ - H ₅₈	RY*(5) H ₅₉	54.23	1.88	0.285
BD (1) C ₅₆ - H ₅₈	BD*(1) C ₃₅ - H ₃₆	4.70	1.14	0.065
BD (1) C ₅₆ - H ₅₈	BD*(1) C ₃₈ - H ₃₉	6.51	1.17	0.078
BD (1) C ₅₆ - H ₅₈	BD*(1) C 38- C41	6.27	1.35	0.082
BD (1) C ₅₆ - H ₅₈	BD*(1) C56- H59	28.10	4.39	0.314
BD (1) C ₅₆ - H ₅₉	RY*(12) C ₅₆	4.53	4.20	0.123
BD (1) C 56- H59	RY*(17) C ₅₆	8.64	3.22	0.149
BD (1) C 56- H59	RY*(5) H 59	142.48	1.87	0.462
BD (1) C 56- H59	BD*(1) C ₃₅ - H ₃₆	14.35	1.13	0.114
BD (1) C 56- H59	BD*(1) C ₃₈ - H ₃₉	15.02	1.16	0.118
BD (1) C ₅₆ - H ₅₉	BD*(1) C ₃₈ - C ₄₁	21.62	1.35	0.152
BD (1) C ₅₆ - H ₅₉	BD*(1) C ₅₃ - H ₅₅	6.22	0.89	0.066
BD (1) C ₅₆ - H ₅₉	BD*(1) C56- H58	12.23	3.12	0.174

Çizelge 4.29 (4) No'lu bileşiğin NBO metotları ile hesaplanan yük dağılımları (devamı)

BD (1) C 56- H59	BD*(1) C56- H59	58.20	4.39	0.451
CR (1) N ₄	RY*(1) C ₁	3.83	15.07	0.215
CR (1) C 56	RY*(2) C ₅₆	6.00	10.95	0.229
CR (1) C ₅₆	RY*(6) C ₅₆	6.30	10.91	0.234
CR (1) C 56	RY*(12) C ₅₆	25.73	13.73	0.531
CR (1) C ₅₆	RY*(15) C ₅₆	29.20	12.17	0.532
CR (1) C 56	RY*(17) C ₅₆	41.46	12.75	0.649
CR (1) C ₅₆	RY*(4) H ₅₈	3.00	12.02	0.169
CR (1) C 56	RY*(1) H ₅₉	7.64	10.71	0.256
CR (1) C ₅₆	RY*(5) H ₅₉	548.89	11.40	2.233
CR (1) C 56	BD*(1) C ₂₉ - C ₃₂	5.13	10.48	0.207
CR (1) C ₅₆	BD*(1) C ₃₅ - H ₃₆	30.85	10.67	0.514
CR (1) C ₅₆	BD*(1) C ₃₈ - H ₃₉	32.95	10.69	0.532
CR (1) C ₅₆	BD*(1) C ₃₈ - C ₄₁	54.31	10.88	0.688
CR (1) C ₅₆	BD*(1) C ₅₆ - H ₅₇	3.64	12.27	0.189
CR (1) C ₅₆	BD*(1) C ₅₆ - H ₅₈	63.38	12.65	0.801
CR (1) C ₅₆	BD*(1) C 56-H59	377.01	13.92	2.049
LP (1) N ₂	BD*(2) C ₁ - N ₄	49.09	0.31	0.110
LP (1) N ₂	BD*(1) C ₁₁ -H ₁₃	8.23	0.63	0.068
LP (1) N ₄	RY*(1) C ₁	6.86	1.31	0.087
LP (1) N ₄	$BD^{*}(1) C_1 - N_2$	16.56	0.78	0.103
LP (1) N4	BD*(1) C ₅ - C ₈	5.13	0.71	0.055

Çizelge 4.29 (4) No'lu bileşiğin NBO metotları ile hesaplanan yük dağılımları (devamı)

E_{LUMO}= -0.14285 eV

 $E_{LUMO+1} = 0.19374 \text{ eV}$

 $\Delta E = E_{(HOMO)} - E_{(LUMO)} = 5.81426 \text{ eV}$

E_{HOMO}= -5.95711 eV

 $\Delta E = E(HOMO-1) - E(LUMO+1) = 6.63794 \text{ eV}$

 $E_{(HOMO-1)} = -6.4420 \text{ eV}$

383e-2

Şekil 4.48 (4) No'lu bileşiğin HOMO-LUMO enerji düzeyleri ve enerji hesabı

Şekil 4.49 (4) No'lu bileşiğin teorik DOS spektrum

Şekil 4.50 (4) No'lu bileşiğin MEP haritası

	НОМО	LUMO	HOMO ⁻¹	LUMO ⁺¹	HOMO- LUMO	HOMO ⁻¹ - LUMO ⁺¹	Elektrone gatiflik (χ)	Sertlik	Kimyasal potansiyel (Pi)	Elektrofi lik endeksi (w)	Yumuşaklık (S)	Elektronik yük (ΔN _{max})
toluen	-0,22789	-0,00176	-0,24077	0,00548	-0,22613	-0,24625	0,114825	0,113065	-0,11483	0,116612	8,844469995	1,015566267
karbontetr aklorür	-0,22768	-0,0019	-0,24045	0,00544	-0,22578	-0,24589	0,11479	0,11289	-0,11479	0,116722	8,85818053	1,016830543
asetonitril	-0,23231	-0,00074	-0,24754	0,00596	-0,23157	-0,2535	0,116525	0,115785	-0,11653	0,11727	8,636697327	1,005902778
dikloromet an	-0,23108	-0,00068	-0,24563	0,00588	-0,2304	-0,25151	0,11588	0,1152	-0,11588	0,116564	8,680555556	1,006172035
Kloroform	-0,22985	-0,00089	-0,24374	0,00575	-0,22896	-0,24949	0,11537	0,11448	-0,11537	0,116267	8,735150245	1,007774284
THF	-0,23078	-0,00071	-0,24517	0,00585	-0,23007	-0,25102	0,115745	0,115035	-0,11575	0,116459	8,693006476	1,006391156
DMSO	-0,23242	-0,00076	-0,2477	0,00596	-0,23166	-0,25366	0,11659	0,11583	-0,11659	0,117355	8,633341967	1,00656134
Metanol	-0,23227	-0,00074	-0,24747	0,00596	-0,23153	-0,25343	0,116505	0,115765	-0,11651	0,11725	8,638189435	1,00639226
Etanol	-0,23212	-0,00072	-0,24724	0,00596	-0,2314	-0,2532	0,11642	0,1157	-0,11642	0,117144	8,643042351	1,00622299
Gaz fazı	-0,21892	-0,00525	-0,23682	0,00712	-0,21367	-0,24394	0,112085	0,106835	-0,11209	0,117593	9,36022839	1,049141199

Çizelge 4.30 (4) No'lu bileşiğin hesaplanan moleküler parametreleri

Zehra DOGRU

H (KCal/Mol)

Sıcaklık (Kelvin)

100	344,68	35,72	92,946
200	349,517	60,248	126,889
298,15	359,103	92,687	183,86
400	367,179	118,731	187,137
500	380,541	147,931	217,276
600	396,633	173,239	246,908
700	415,061	194,728	275,578
800	435,471	212,971	303,069
900	457,566	228,514	329,309
1000	481,098	241,799	354,301

Çizelge 4.31 (4) No'lu bileşik için hesaplanmış termodinamik parametreler

S (Cal/Mol-

Kelvin)

CV(Cal/Mol-

Kelvin)

Şekil 4.51 (4) No'lu bileşik için hesaplanmış termodinamik parametreler

 $H^{0}m = 341,3049 + 0,020087 T + 1,21x 10^{-4} T^{2}, \qquad (R^{2} = 0,9995)$ $S = 66,41196 + 0,336311T - 5 x 10^{-5} T^{2}, \qquad (R^{2} = 0,9889)$

 $CV = -2,30726 + 0,355814 \text{ T} - 1,1 \text{ x} 10^{-4} \text{ T}^2$, ($R^2 = 0,9987$)

Şekil 4.52 (4) No'lu.Bileşiğe ait teorik UV spektrumları

λ (nm)	E (eV)	MOs katkısı	Çözücü
Teorik			
237	42145	H-1->L+1 (%16)	
		H->L (%63)	
		H-1->L (%4)	
		H->L+1 (%7)	
-	43143	H-1->L(%14)	Та1
021		H-1->L+1 (%17)	Toluen
231		H->L (%33)	
		$H \rightarrow L + 1(\% 22)$	
017	46078	H-1->L(%52)	-
217		$H \rightarrow L + 1(\%40)$	
237	42102	H-1->L+1 (%15)	
		H->L (%64)	
		H-1->L (%4)	
		H->L+1 (%7)	
232	43075	H-1->L(%14)	
		H-1->L+1 (%17)	Karbon Tetraklorur
		H->L (%32)	
		$H \rightarrow L + 1(\% 23)$	
217	46005	H-1->L(%55)	-
		$H \rightarrow L + 1(\%38)$	
232	43046	H-1->L+1 (%18)	
		H->L (%14)	
		H-1->L (%58)	
		H->L+1 (%2)	Asetonitril
224	44466	H-1->L+1 (%21)	-
		H->L (%10)	
		H-1->L (%33)	

Çizelge 4.32 (4) No'lu Bileşiğe ait maksimum absorbans değerleri

		H->L+1 (%27)	
210			
	47494	H-1->L(%26)	
		H->L+1 (%54)	
		H->L (%4)	
		H->L+ $5(\%5)$	
		H -> L + 6(% 2)	
233	42812	H-1->L+1 (%14)	Diklormetan
		H->L (%16)	
		H-1->L (%58)	
		H->L+1 (%4)	
226	44135	H-1->L+1 (%19)	
		H->L (%11)	
		H-1->L (%35)	
		H->L+1 (%25)	
	47115	H-1->L(%30)	
212		H->L+1 (%53)	
		H->L (%3)	
		$H \rightarrow L + 5(\%4)$	
		H -> L + 6(% 2)	
234	42577	H-1->L+1 (%10)	
		H->L (%17)	
		H-1->L (%58)	
		H->L+1 (%6)	
228	43774	H-1->L+1 (%17)	
		H->L (%13)	Kloroform
		H-1->L (%37)	
		H->L+1 (%23)	
213	46741	H-1->L(%36)	
		H->L+1 (%51)	
		H->L+ $5(\%3)$	
233	42763	H-1->L+1 (%14)	
		H->L (%16)	
		H-1->L (%58)	
		H->L+1 (%4)	
226	44053	H-1->L+1 (%18)	
		H->L (%12)	
		H-1->L (%36)	THF
		H->L+1 (%24)	
	47033	H-1->L(%31)	
212		H->L+1 (%53)	
		H->L (%2)	
		H->L+ $5(\%4)$	
		$H \rightarrow L + 6(\%2)$	
232	43042	H-1->L+1 (%18)	
		H->L (%14)	
		H-1->L (%59)	
		H->L+1 (%2)	
	44486	H-1->L+1 (%21)	DMSO
224		H->L (%10)	
		H-1->L (%33)	
		H->L+1 (%27)	
	47500	H-1->L(%26)	
210			

Çizelge 4.32 (4) No'lu Bileşiğe ait maksimum absorbans değerleri (devamı)

		H->L+1 (%55)	
		H->L (%4)	
		H->L+ $5(\%5)$	
		H->L+6(%2)	
232	43044	H-1->L+1 (%18)	
		H->L (%14)	
		H-1->L (%58)	
		H->L+1 (%2)	
224	44458	H-1->L+1 (%21)	
		H->L (%10)	
		H-1->L (%34)	Metanol
		H->L+1 (%27)	_
	47488	H-1->L(%27)	
210		H->L+1 (%54)	
		H->L (%4)	
		H->L+5(%5)	
		H->L+ $6(\%2)$	
232	43009	H-1->L+1 (%17)	
		H->L (%14)	
		H-1->L (%58)	
		H->L+1 (%2)	
225	44417	H-1->L+1 (%21)	
		H->L (%10)	
		H-1->L (%34)	Etanol
		H->L+1 (%26)	_
210	47434	H-1->L(%27)	
		H->L+1 (%54)	
		H->L (%4)	
		H->L+5(%5)	
		H->L+ $6(\%2)$	
			Asetik asit
			Dioksan
			Formik asit

Çizelge 4.32 (4) No'lu Bileşiğe ait maksimum absorbans değerleri (devamı)

4.3. Tartışma

Yapılan bu çalışmanın farklı yöntemlerle sentezleri literatürde mevcuttur. Tez de elde edilen bileşikler Şekil 4.53'te gösterilen **1-4** No'lu maddeler hem mikrodalga destekli sentez metodu hem de geleneksel metot kullanılarak sentezlendi. Elde edilen bileşiklerin deneysel ve teorik hesaplamaları yapıldı. Mikrodalga destekli sentez metodu geliştirilirken Çizelge 4.33'deki deneme reaksiyonları 1,3-diaminopropan ile palmitoil klorür kullanılarak gerçekleştirildi.

Güç (W)	Ayarlanan Sıcaklık (°C)	Sıcaklığa çıkma süresi (dk)	Sıcaklıkta Bekleme Süresi(dk)	Verim (%)
10	80	1	5	85,6
20	80	1	5	87,2
30	80	1	5	87,8
40	80	1	5	88,4
50	80	1	5	89.05
60	80	1	5	89.04
70	80	1	5	89.01
50	80	1	10	95.41
50	80	1	15	95.35
50	80	1	20	95.30

Çizelge 4.33 Mikrodalga destekli deneme reaksiyonları ve verim karşılaştırmaları

Şekil 4.53 (1),(2),(3) ve (4) Teorik hesaplamaları yapılan moleküller

Sentezlenen bileşiklerin; FT-IR, ¹H-NMR, UV spektrum analizleri yapıldı, erime noktaları tespit edildi.

Sentezlenen maddelerin teorik hesaplamaları Gaussian 09 paket programında DFT yöntemi ve 6-311+G(d,p) temel seti kullanılarak yapıldı. Elde edilen veriler bulgular kısmında ayrıntılı olarak verildi.

Sentezlenen bileşiklerin ¹H-NMR spektrumlarının karşılaştırılması sonucunda elde edilen bileşiklerde 6.20 ppm civarında singlet N-H pikinin gözlemlenmesi; imidazolin CH₂'lerin tekli pik olarak; pirimidin N-CH₂'lerin triplet olarak yaklaşık 3.40 ppm'de gözlemlenmesi; buna paralel olarak pirimidin CH₂ protonlarının 2.20 ppm de gözlemlenmesi, alifatik CH₂ protonlarının 1 ppm civarında gözlemlenmesi yapıların oluştuğunu kanıtlar niteliktedir.

Elde edilen bileşiklerin HOMO ve LUMO enerji düzeyleri karşılaştırıldığında ise (Şekil 4.55 ve Şekil 4.56); elektron yoğunluğunun HOMO orbitallerinde ve LUMO orbitallerinde imidazolin halkası ve pirimidin halkası üzerinde yoğunlaştığı gözlemlendi.

Şekil 4.55 Bileşiklerin HOMO-LUMO enerji yüzeylerinin karşılaştırılması

Bileşik	HOMO ⁻¹	LUMO ⁺¹
no		
1	Joseph Jo	in the second e>

Şekil 4.56 Bileşiklerin HOMO-1 – LUMO+1 enerji yüzeylerinin karşılaştırılması

 ΔE değeri molekülün kimyasal kararlılığı ve stabilitesi hakkında bilgi vermektedir. Molekül ΔE değeri ne kadar küçük ise o ölçüde kararlıdır. Elde edilen bileşiklerinde ΔE değerinin küçük olması molekül kararlılıklarını doğrulamaktadır.

<u>.</u>				
Bileşik No	$\Delta E = E_{(HOMO)} - E_{(LUMO)}$	$\Delta E = E_{(HOMO-1)} - E_{(LUMO+1)}$		
1	5.9984	7.30570		
2	6.00011	7.32122		
3	5.81915	6.63223		
4	5.81426	6.63794		

Çizelge 4.34 Bileşiklerin ΔE (eV) değerleri

Çizelge 4.34'deki sonuçlara göre HOMO-LUMO orbitalleri arasındaki enerji farkının en fazla olduğu **1** nolu bileşik, en az farkın ise **3** nolu bileşik olduğu tespit edildi.

Regresyon analizi için deneysel ve teorik NMR sonucunda elde edilen deneysel sinyaller (ppm) ve teorik sinyallerin (gaz fazı ve kloroform fazında) sıralı ikili serileri oluşturuldu. Bu sıralardan ilki, deneysel olan verileri yani X bağımsız değişken serisini ve ikincisi ise teorik olan veriler yani Y bağımlı değişken serisini oluşturacak şekilde hem gaz fazı için hem de kloroform fazı için ayrı olarak belirlendi. Belirlenen sıralı ikililerin lineer regresyon analizi yapıldı. Lineer doğrudan R² değerleri belirlendi.

Çizelge 4.35 Bileşiklerin R ² değerleri				
Bileşik no	¹ H-NMR R ²	¹ H-NMR R ²		
	(deneysel/gaz	(deneysel/		
	fazı)	kloroform fazı)		
1	0.7948	0.7559		
2	0.7086	0.7907		
3	0,6185	0,675		
4	0.3194	0.4214		

Çizelge 4.35'deki sonuçlara göre tüm değerlerin gerçek değerlerle uyumlu olduğu ancak gerçek değere en yakın bileşiğin ¹H-NMR deneysel/gaz fazında **1** No'lu, ¹H-NMR deneysel/kloroform fazında da **1** No'lu bileşik olduğu tespit edildi.

Moleküler elektrostatik potansiyel (MEP), moleküler aktiviteyi açıklmak için kullanılan yöntemlerden biridir. Yapılan MEP haritası ile Şekil 4.57'de gözlemlenen kırmızı bölgelerin N atomlarının olduğu maksimum negatif yüklü bölgeleri ifade ettiği, mavi renkli bölgelerin pozitif yükü, sarı ve yeşil renkli bölgelerin ise negatif ve orta seviyede negatif yükü temsil ettiği belirlendi. Moleküllerin genel olarak alifatik kısımlarının orta seviyede negatif bölgeler olduğu gözlemlendi.

Şekil 4.57 Bileşiklerin MEP haritası

Bileşiklerin hekzan, dioksan, kloroform, THF, DMF, DMSO, etil alkol, metil alkol, piridin, formik asit gibi farklı çözücülerde UV spektrumları alınarak, teorik UV spekrumları ile karşılaştırıldı. Geçişlerin çoğunlukla (%94) 235 nm'de HOMO-LUMO arasındaki geçişlerle ilgili olduğu belirlendi.

1-4'nolu bileşiklerin 100-1000 °K sıcaklık aralığında termodinamik analizleri yapılarak, entalpi, entropi ve ısı kapasiteleri teorik olarak hesaplandı. Elde edilen değerlerde sıcaklık artışına paralel olarak gelişen bir artış gözlemlendi.

5. SONUÇLAR ve ÖNERİLER

İmidazol ve pirimidin türevlerinin tıp ve farmokoloji alanlarında sahip oldukları önemli biyolojik aktiviteleri nedeniyle bu alanda yapılan her çalışma literatüre ciddi katkılar sağlayacaktır.

Tezde yapılan çalışmaların sıralaması yapıldığında çalışmanın iki kısımda sınıflandırılabilir olduğu belirlendi. Buna göre; imidazolin ve pirimidin türevli bileşiklerin hem geleneksel hem de mikrodalga yöntemiyle sentezlenmesi, sentezlenen bileşiklerin yapılarının FT-IR, ¹H-NMR, UV-Vis yöntemleriyle karakterize edilmesi tezin ilk kısmını oluşturmaktadır.

Bileşiklerin Gaussian 09 paket programı ile DFT teknikleri kullanılarak teorik FT-IR, ¹H-NMR, UV-vis spektrumlarının belirlenerek elde edilen verilerin deneysel verilerle karşılaştırılması ise çalışmanın ikinci kısmını oluşturmaktadır.

Moleküllerin biyolojik aktiviteleri ile yakın ilişkili olan HOMO, LUMO orbital enerjilerinin belirlenmesi yeni sentezlenecek ilaç bileşikleri için de rehberlik edecektir.

Sonuç olarak teorik ve deneysel olarak yapılan bu çalışmaların ve verilerinin karşılaştırılması ile literatürde bu konuyu çalışacak bilim adamlarına yol gösterecek nitelikte olacaktır.

6. KAYNAKLAR

- İ. Yıldırım, "Piridin-2,6-dikarboksilik Asit, Orotik Asit, Metabisülfit, Sakkarin, İmidazol ve Metil İmidazol Geçiş Metal Komplekslerinin X-ışını, EPR ve Optik Soğurma Teknikleri ile İncelenmesi", Doktora tezi, Ondokuz Mayıs Üniversitesi, 2013.
- [2] Ö. Keskin, "İmidazolidin-2-tiyon Türevlerinin Sentezi, Karakterizasyonu, DFT ve DOKİNG Hesaplamaları", Yüksek lisans tezi, Adıyaman Üniversitesi, 2018.
- [3] F. Özbaş, "Piridin ve Bazı Piridin Türevlerinin (α-Pikolin, β-Pikolin ve γ-Pikolin) Aktif Karbon, Manyetik Aktif Karbon ve Moleküler Elek ile Uzaklaştırılması", Yüksek lisans tezi, İstanbul Üniversitesi, 2008.
- [4] S. Fandaklı, "Pirimidin Türevi Bileşiklerin Kalkonlardan Mikrodalga Yöntemi ile Sentezi ve Biyolojik Aktiviteleri", Doktora tezi, Karadeniz Teknik Üniversitesi, 2016.
- [5] S. Uğur Bulan, "N-Pirimidin-N-Aril Üre Türevlerinin Sentezi ve Biyolojik Aktivite Çalışmaları", Yüksek lisans tezi, Erciyes Üniversitesi, 2018.
- [6] I.B. Obot, D.D. Macdonald ve Z.M. Gasem, "Density Functional Theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview", *Corrosion Science*, 99, 1-30, 2015.
- [7] Y. Gülseven Sıdır, İ. Sıdır, F. Demiray, "Structural and Electronic Properties of Heptachlor", *Journal of Structural Chemistry*, 56, 1275-1289, 2015.
- [8] O. Abdulrahman HAMAD)(O.A. Hamad, "Synthesis, Analytical and Spectroscopic Characterization of Novel Nanoparticles/ Nanopigments Using a Microwave Assisted Method", Yüksek lisans tezi, Kahramanmaraş Sütçüimam Üniversitesi, 2014.
- [9] S. An, B. Yin, P. Liu, X. Li, C. Li, J. Li ve Z Shi, "Microwave-Assisted Cascade Cycloaddition for C–N Bond Formation: An Approach to the Construction of 1,4,5,6-Tetrahydropyrimidine and 2-Imidazoline Derivatives", *Synthesis*, 45, 2525-2532, 2013.
- [10] S. Fandaklı, "Pirimidin Türevi Bileşiklerin Kalkonlardan Mikrodalga Yöntemi ile Sentezi ve Biyolojik Aktiviteleri", Doktora tezi, Karadeniz Teknik Üniversitesi, 2016.
- [11] M. Genc, E. Yılmaz, S. Ilhan ve Z. Karagoz, "Synthesis, antihistaminic action and theoretical studies of (4-methoxybenzyl)(1,4,5,6-tetrahydropirimidin-2-yl) amine hydroiodide", *Research on Chemical Intermediates*, 39, 3011-3021, 2012.
- [12] F. Ahmad, M.J. Alam, M. Alam, S. Azaz, M. Parveen, S. Park ve S. Ahmad, "Synthesis, spectroscopic, computational (DFT/B3LYP), AChE inhibition and antioxidant studies of imidazole derivative", *Journal of Moleculer Structure*, 1151, 327-342, 2018.
- [13] E. Yılmaz, "Theoretical and experimental studies of newly synthesized (Z)-4-(2-(3,5-dibromo-2-hydroxy-4-methoxybenzylidene)hydrazinyl) benzonitrile compound", *Journal of Moleculer Structure*, 1166, 407-415, 2018.
- [14] M.M.L. Kadam, D.Patil, N. Sekar, "4-(Diethylamino) salicylaldehyde based fluorescent Salen ligand with redshifted emission – A facile synthesis and DFT investigation", *Journal of Luminescence*, 204, 354-367, 2018.

- [15] R. Thomas, M. Hossain, Y.S. Mary, K.S. Resmi, S Armakovic, S.J. Armakovic, A.K. Nanda, V.K. Ranjan, G. Vijayakumar, C.V. Alsenoy, "Spectroscopic analysis and molecular docking of imidazole derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations", *Journal of Moleculer Structure*, 1158, 156-175, 2018.
- [16] A. Gourona , K. L. Mapihanb , S. Camperosc , A. A. Farrac , V. Laira , A. Ringuedéa, M. Cassira , B. Diawaraa, "New insights in self-assembled monolayer of imidazolines on iron oxide investigated by DFT", *Applied Surface Science*, 456, 437-444, 2018.
- [17] Y. Nural, M. Gemili, N. Seferoglu, E. Sahin, M. Ulger, H. Sari, "Synthesis, crystal structure, DFT studies, acid dissociation constant, and antimicrobial activity of methyl 2-(4-chlorophenyl)-7a-((4-chlorophenyl)carbamothioyl)-1oxo-5,5-diphenyl-3-thioxohexahydro-1H-pyrrolo[1,2-e]imidazole-6carboxylate", *Journal of Moleculer Structure*, 1160, 375-382, 2018.
- [18] M. Sudharsan, D. Suresh, "Synthesis and Palladium(II) Metal Chemistry of Thiazoline/Imidazoline Derived Ligands: An Efficient Catalyst for Cross-Coupling Reactions of Arylboronic Acids with Acid Chlorides and Aryl Halides", *İnorganica Chimica Acta*, 483, 598-608,2018.
- [19] Md. R. Moni, S. Ghosh, S.M. Mobin, D. A. Tocher, G. Hogarth, M. G. Richmond, S. E. Kabir, "Diphosphine-induced thiolate-bridge scission of [Re(CO)3($\mu,\kappa 2$ -S,N-thpymS)]2 (thpymS = 1,4,5,6-tetrahydropyrimidine-2-thiolate): Structural and computational studies of configurational isomers of [Re(CO)3($\kappa 2$ -S,NthpymS)]2($\mu,\kappa 1,\kappa 1$ -dppe), *Journal of Organometallic Chemistry*, 871, 167-177, 2018.
- [20] H.R. Memarian, E. Sanchooli, "Substitution effects on the NMR and DFT studies of 4,6-diaryl-2-oxo-1,2,3,4-tetrahydropyrimidines", *Letter - Spectral Assignment*, 178-183, 2015.
- [21] H.R. Memarian, H. Sabzyan, M. Ranjbar, "DFT study of 1-, 4-, and 5-substituted 2-oxo-1,2,3, 4-tetrahydropyrimidines: substituent steric and electronic effects, and ring flipping", *Original Research*, 1, 85-94, 2013.
- [22] H.R. Memarian, H. Sabzyan, E. Sanchooli, "DFT study of the molecular structure of 4,6-diaryl-2-oxo-1,2,3,4-tetrahydropyrimidines", *Computational and Theoretical Chemistry*,1093,9-19,2016.
- [23] M. Z. A. Rafiquee, S. Khan, N.Saxena ve M. A. Quraishi, "Investigation of some oleochemicals as green inhibitors on mild steel corrosion in sulfuric acid", *Journal* of Applied Electrochemistry, 39, 1409–1417, 2009.
- [24] M. A. Quraishi, M. Z. A. Rafiquee, N. Saxena ve Sadaf Khan, "Inhibition of Mild Steel Corrosion in Presence of Fatty Acid Imidazolines in Hydrochloric Acid" *Protection of Metals and Physical Chemistry of Surfaces*, 44, 91–98, 2008.
- [25] M. A. Quraishi, M. Z. A. Rafiquee, S. Khan ve N. Saxena, "Corrosion inhibition of aluminium in acid solutions by some imidazoline derivatives", *Journal of Applied Electrochemistry*, 37, 1153–1162, 2007.
- [26] S. Zhen, L. Zheng ve B. Yinjuan "The reduction ring-opening reaction of imidazoline", *Science in China*, 43, 69-75, 2000.
- [27] Z. Shi, H. Gu, "Synthesis of Aldehydes from Carboxylic Acids via 2-Imidazolines", *Synthetic Communications*, 27, 2701-2707, 1997.

- [28] F. Kanetani, T. Monden, K. Negoro, M. Ishikawa, "Surface activities and antimicrobial properties of (3-(2-alkyl-2-imidazolin-1-yl)-1-propanesulfonic acids", *Japonya Kimya Derneği Dergisi*, 8, 719-725, 1994.
- [29] V. Janata, J. Fikar, V. Hola, V. Peterka, J. Novak, F. Liska, "Synthesis and antimicrobial efficacy of N-(aminoalkyl)alkanamides and their salts", *CeskoSlovenska Farmacie*, 40, 97-101, 1991.
- [30] R. N. Butler, J. D. Thornton, ve C. B. O'Regan "Rapid Synthesis and Interconversions of Fatty 4,5-Dihydroimidazoles and Fatty I ,4,5,6-Tetrahydropyrimidines. Thermal Cyclizations of Fatty Amides Involving Phenyl Phosphorodiamidate", *Journal of the Chemical Society Perkin Transactions 1: Organic and Bio-Organic Chemistry*, 9, 2197-2200, 1983.
- [31] V. M. Ledovskikh, R. Gonzalez, H. D., "Development of nitrogen-containing corrosion inhibitors for metals from a by-product of Cuba-wax sugar production", *Zashchita Metallov*, 18, 466-469, 1982.
- [32] R.N. Butler, C.B. O'Regan, P. Moynihan, "A rapid thermal cyclization of ethane-1,2-bis-fatty amides and alcohol derivatives to $\Delta 2$ -imidazolines with phenylphosphorodiamidat", *Tetrahedron Letters*, 33, 3117-3118, 1979.
- [33] I. T. Polkovnichenko, L. G. Safina, V. V. Krut, "Solvent extraction of ion associates of higher 2-alkyl-2-imidazolines with chlorophenol red" *Zhurnal Analiticheskoi Khimii*, 33, 1387-1390, 1978.
- [34] R. V. Kucher, I. A. Shevchuk, A. I. Serdyuk, V. V. Krut, Z. M. Vashin, A. V. Naumov, "Micelle formation of 2-alkyl-2-imidazoline salts" *Kolloidnyi Zhurnal*, 40, 774-778, 1978.
- [35] V. I. Lysenko, V. N. Verezhnikov, V. V. Krut, B. E. Chistyakov, "Synthesis and colloidal-chemical properties of the condensation products of aliphatic acids with ethyleneamines. I. 2-Alkyl-2-imidazolines", *Kolloidnyi Zhurnal*, 38, 914-918, 1976.
- [36] B.H. Bory, J.C. Curry, "Germicide", *Can*, CA 943429 A1 19740312, 1974.
 [37] "Synthesis of diimidazoline salts of dicarboxylic acids which are corrosion inhibitors", Korroziya i Zashchita v Neftegazovoi Promyshlennosti, 7, 3-4 1971.
- [38] "Imidazolines fatty acids", Fette, Seifen, Anstrichmittel, 74, 86-93, 1972.
- [39] J. Tornquist, "Surface active 2-alkyl-2-imidazolines", Chem. Phys. Appl. Surface Active Subst., Proc. Int. Congr., 4th, 1, 387-396, 1967.
- [40] V. I. Isagulyants, Z. D. Kustanovich, R. S. Boeva, "Ethylenediamine condensation with monocarboxylic acids", *Doklady Akademii Nauk Armyanskoi SSR*, 44, 23-28, 1967.
- [41] F. Nishio, N. Yamamoto, Y. Iwakura, N. Nakabayashi, "Hardening gelatin", No Corporate Source data available, BE 672003 19660301, 1966.
- [42] "Antistatic additives for thermoplastics", *No Corporate Source data available*, NL 6512842 19660412, 1966.
- [43] E. Baeder, W. Unseld, "Polymerization of substituted vinyl compounds", *No Corporate Source data available*, DE 1219680 19660623, 1966.
- [44] B.W. Kiff, "Fungicide", No Corporate Source data available, US 2540171 19510206, 1951.
- [45] M. Bockmuhl, R. Knoll, "Basic therapeutic products from imino ethers of higher fatty acids", *No Corporate Source data available*, US 1958529 19340515, 1934.

- [46] G.W.T. M.J.F. R. A. Gaussian 09, H. B. Schlegel, G.E. Scuseria, M. A. Robb, J. R. 0 200 400 600 800 1000 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 Thermodynamic parameters Temperature in K H CV S Fig. 12. Correlation graphics for DMBH. 414 E. Yilmaz / Journal of Molecular Structure 1166 (2018) 407e415 Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [47] T.K.R. Dennington, J. Millam, GaussView, Version 5, Semichem Inc., Shawnee Mission KS, 2009.
- [48] A.D. Becke, "Density-functional thermochemistry .3. The role of exact Exchange", J. Chem. Phys. 98 (7), 5648-5652, 1993.
- [49] C.T. Lee, W.T. Yang, R.G. Parr, "Development of the colle-salvetti correlationenergy formula into a functional of the electron-density", *Phys. Rev.* B 37 (2), 785-789, 1988.
- [50] K. Wolinski, J.F. Hinton, P. Pulay, "Efficient implementation of the gaugeindependent atomic orbital method for Nmr chemical-shift calculations", *J. Am. Chem. Soc.* 112 (23), 8251-8260, 1990.
- [51] H. Michal, Jamroz, "Vibrational Energy Distribution Analysis VEDA 4", Warsaw, 2004-2010.
- [52] N.M. O'Boyle, A.L. Tenderholt, K.M. Langner, "cclib: a library for packageindependent computational chemistry algorithms", *J. Comput. Chem.* 29 (5) 839-845, 2008.
7. KİŞİSEL BİLGİLER

Adı Soyadı : ZEHRA DOGRU

Doğum Yeri : ADIYAMAN

Doğum Tarihi : 27/07/1994

Medeni Hali : BEKAR

Yabancı Dili : İNGİLİZCE

E-posta : <u>tugcedogru00@gmail.com</u>

Eğitim Durumu

Derece	Alan	Üniversite	Mezuniyet Yılı
Yüksek Lisans	Kimya Anabilim Dalı	Adıyaman Üniversitesi	2019
Lisans	Eğitim Fak. Fen bilgisi Öğrt.	Kahramanmaraş Sütçüimam Üniversitesi	2016
Lise	Sayısal	Adıyaman Lisesi	2012